- In `emit_producing_error_guaranteed`, only allow `Level::Error`.
- In `emit_diagnostic`, only produce `ErrorGuaranteed` for `Level` and
`DelayedBug`. (Not `Bug` or `Fatal`. They don't need it, because the
relevant `emit` methods abort.)
- Add/update various comments.
Some cleanups around diagnostic levels.
Plus some refactoring in and around diagnostic levels and emission. Details in the individual commit logs.
r? ````@oli-obk````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
- Combine two different blocks involving
`diagnostic.level.get_expectation_id()` into one.
- Combine several `if`s involving `diagnostic.level` into a single
`match`.
This requires reordering some of the operations, but this has no
functional effect.
It doesn't affect behaviour, but makes sense with (a) `FailureNote` having
`()` as its emission guarantee, and (b) in `Level` the `is_error` levels
now are all listed before the non-`is_error` levels.
Remove `BorrowckErrors::tainted_by_errors`
This PR removes one of the `tainted_by_errors` occurrences, replacing it with direct use of `ErrorGuaranteed`.
r? `@oli-obk`
`emit_future_breakage` calls
`self.dcx().take_future_breakage_diagnostics()` and then passes the
result to `self.dcx().emit_future_breakage_report(diags)`. This commit
removes the first of these and lets `emit_future_breakage_report` do the
taking.
It also inlines and removes what is left of `emit_future_breakage`,
which has a single call site.
- `emitted_at` isn't used outside the crate.
- `code` and `messages` are public fields, so there's no point have
trivial getters/setters for them.
- `suggestions` is public, so the comment about "functionality on
`Diagnostic`" isn't needed.
When there are two possibilities, both of which use a `String`, it's
nicer to use a struct than an enum. Especially when mapping the contents
into a tuple.
It contains an `i128`, but when creating them we convert any number
outside the range -100..100 to a string, because Fluent uses an `f64`.
It's all a bit strange.
This commit changes the `i128` to an `i32`, which fits safely in
Fluent's `f64`, and removes the -100..100 range check. This means that
only integers outside the range of `i32` will be converted to strings.
`Diagnostic::keys`, which is used for hashing and equating diagnostics,
has a surprising behaviour: it ignores children, but only for lints.
This was added in #88493 to fix some duplicated diagnostics, but it
doesn't seem necessary any more.
This commit removes the special case and only four tests have changed
output, with additional errors. And those additional errors aren't
exact duplicates, they're just similar. For example, in
src/tools/clippy/tests/ui/same_name_method.rs we currently have this
error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:79:9
|
LL | impl T1 for S {}
| ^^^^^^^^^^^^^^^^
```
and with this change we also get this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:81:9
|
LL | impl T2 for S {}
| ^^^^^^^^^^^^^^^^
```
I think printing this second argument is reasonable, possibly even
preferable to hiding it. And the other cases are similar.
Suppress unhelpful diagnostics for unresolved top level attributes
Fixes#118455, unresolved top level attribute error didn't imported prelude and already have emitted an error, report builtin macro and attributes error by the way, so `check_invalid_crate_level_attr` in can ignore them.
Also fixes#89566, fixes#67107.
r? `@petrochenkov`
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
We have several methods indicating the presence of errors, lint errors,
and delayed bugs. I find it frustrating that it's very unclear which one
you should use in any particular spot. This commit attempts to instill a
basic principle of "use the least general one possible", because that
reflects reality in practice -- `has_errors` is the least general one
and has by far the most uses (esp. via `abort_if_errors`).
Specifics:
- Add some comments giving some usage guidelines.
- Prefer `has_errors` to comparing `err_count` to zero.
- Remove `has_errors_or_span_delayed_bugs` because it's a weird one: in
the cases where we need to count delayed bugs, we should really be
counting lint errors as well.
- Rename `is_compilation_going_to_fail` as
`has_errors_or_lint_errors_or_span_delayed_bugs`, for consistency with
`has_errors` and `has_errors_or_lint_errors`.
- Change a few other `has_errors_or_lint_errors` calls to `has_errors`,
as per the "least general" principle.
This didn't turn out to be as neat as I hoped when I started, but I
think it's still an improvement.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
`-Ztreat-err-as-bug` treats normal errors and delayed bugs equally,
which can lead to some really surprising results.
This commit changes `-Ztreat-err-as-bug` so it ignores delayed bugs,
unless they get promoted to proper bugs and are printed.
This feels to me much simpler and more logical. And it simplifies the
implementation:
- The `-Ztreat-err-as-bug` check is removed from in
`DiagCtxt::{delayed_bug,span_delayed_bug}`.
- `treat_err_as_bug` doesn't need to count delayed bugs.
- The `-Ztreat-err-as-bug` panic message is simpler, because it doesn't
have to mention delayed bugs.
Output of delayed bugs is now more consistent. They're always printed
the same way. Previously when they triggered `-Ztreat-err-as-bug` they
would be printed slightly differently, via `span_bug` in
`span_delayed_bug` or `delayed_bug`.
A minor behaviour change: the "no errors encountered even though
`span_delayed_bug` issued" printed before delayed bugs is now a note
rather than a bug. This is done so it doesn't get counted as an error
that might trigger `-Ztreat-err-as-bug`, which would be silly.
This means that if you use `-Ztreat-err-as-bug=1` and there are no
normal errors but there are delayed bugs, the first delayed bug will be
shown (and the panic will happen after it's printed).
Also, I have added a second note saying "those delayed bugs will now be
shown as internal compiler errors". I think this makes it clearer what
is happening, because the whole concept of delayed bugs is non-obvious.
There are some test changes.
- equality-in-canonical-query.rs: Minor output changes, and the error
count reduces by one because the "no errors encountered even though
`span_delayed_bug` issued" message is no longer counted as an error.
- rpit_tait_equality_in_canonical_query.rs: Ditto.
- storage-live.rs: The query stack disappears because these delayed bugs
are now printed at the end, rather than when they are created.
- storage-return.rs, span_delayed_bug.rs: now need
`-Zeagerly-emit-delayed-bugs` because they need the delayed bugs
emitted immediately to preserve behaviour.
There are two places that handle normal delayed bugs. This commit
factors out some repeated code.
Also, we can use `std::mem::take` instead of `std::mem::replace`.
Remove `DiagnosticBuilder::buffer`
`DiagnosticBuilder::buffer` doesn't do much, and part of what it does (for `-Ztreat-err-as-bug`) it shouldn't.
This PR strips it back, replaces its uses, and finally removes it, making a few cleanups in the vicinity along the way.
r? ``@oli-obk``
annotate-snippets: update to 0.10
Ports `annotate-snippets` to 0.10, temporary dupes versions; other crates left that depends on 0.9 is `ui_test` and `rustfmt`.