Run rustfmt on files that need it.
Somehow these files aren't properly formatted. By default `x fmt` and `x tidy` only check files that have changed against master, so if an ill-formatted file somehow slips in it can stay that way as long as it doesn't get modified(?)
I found these when I ran `x fmt` explicitly on every `.rs` file in the repo, while working on
https://github.com/rust-lang/compiler-team/issues/750.
Make `clamp` inline
Context: rust-lang/rust-clippy#12826
This results in slightly more optimized assembly. (And most important, it's now less than lines than just manually clamping a value)
Simplify key-based thread locals
This PR simplifies key-based thread-locals by:
* unifying the macro expansion of `const` and non-`const` initializers
* reducing the amount of code in the expansion
* simply reallocating on recursive initialization instead of going through `LazyKeyInner`
* replacing `catch_unwind` with the shared `abort_on_dtor_unwind`
It does not change the initialization behaviour described in #110897.
Add a fast-path to `Debug` ASCII `&str`
Instead of going through the `EscapeDebug` machinery, we can just skip over ASCII chars that don’t need any escaping.
---
This is an alternative / a companion to https://github.com/rust-lang/rust/pull/121138.
The other PR is adding the fast path deep within `EscapeDebug`, whereas this skips as early as possible.
solaris add support for threadname.
from std::unix:🧵:set_name, pthread_setname_np is a weak symbol (not always had been available). Other than that, similar to linux only having twice of its buffer limit.
Validate the special layout restriction on `DynMetadata`
If you look at <https://stdrs.dev/nightly/x86_64-unknown-linux-gnu/std/ptr/struct.DynMetadata.html>, you'd think that `DynMetadata` is a struct with fields.
But it's actually not, because the lang item is special-cased in rustc_middle layout:
7601adcc76/compiler/rustc_middle/src/ty/layout.rs (L861-L864)
That explains the very confusing codegen ICEs I was getting in https://github.com/rust-lang/rust/pull/124251#issuecomment-2128543265
> Tried to extract_field 0 from primitive OperandRef(Immediate((ptr: %5 = load ptr, ptr %4, align 8, !nonnull !3, !align !5, !noundef !3)) @ TyAndLayout { ty: DynMetadata<dyn Callsite>, layout: Layout { size: Size(8 bytes), align: AbiAndPrefAlign { abi: Align(8 bytes), pref: Align(8 bytes) }, abi: Scalar(Initialized { value: Pointer(AddressSpace(0)), valid_range: 1..=18446744073709551615 }), fields: Primitive, largest_niche: Some(Niche { offset: Size(0 bytes), value: Pointer(AddressSpace(0)), valid_range: 1..=18446744073709551615 }), variants: Single { index: 0 }, max_repr_align: None, unadjusted_abi_align: Align(8 bytes) } })
because there was a `Field` projection despite the layout clearly saying it's [`Primitive`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/enum.FieldsShape.html#variant.Primitive).
Thus this PR updates the MIR validator to check for such a projection, and changes `libcore` to not ever emit any projections into `DynMetadata`, just to transmute the whole thing when it wants a pointer.
Bugfix `MiriAllocBytes` to guarantee different addresses
Fix in `alloc_bytes.rs` following https://github.com/rust-lang/miri/pull/3526
Currently when an allocation of `size == 0` is requested we return a `std::ptr::without_provenance_mut(align)`, but this means returned `ptr`s may overlap, which breaks things.
Somehow these files aren't properly formatted. By default `x fmt` and `x
tidy` only check files that have changed against master, so if an
ill-formatted file somehow slips in it can stay that way as long as it
doesn't get modified(?)
I found these when I ran `x fmt` explicitly on every `.rs` file in the
repo, while working on
https://github.com/rust-lang/compiler-team/issues/750.
Rollup of 6 pull requests
Successful merges:
- #125263 (rust-lld: fallback to rustc's sysroot if there's no path to the linker in the target sysroot)
- #125345 (rustc_codegen_llvm: add support for writing summary bitcode)
- #125362 (Actually use TAIT instead of emulating it)
- #125412 (Don't suggest adding the unexpected cfgs to the build-script it-self)
- #125445 (Migrate `run-make/rustdoc-with-short-out-dir-option` to `rmake.rs`)
- #125452 (Cleanup check-cfg handling in core and std)
r? `@ghost`
`@rustbot` modify labels: rollup
LLVM component names are not immediately obvious (they usually omit any
suffixes on the target arch name), and if they're incorrect, the test
will silently never run.
from std::unix:🧵:set_name, pthread_setname_np is a weak symbol
(not always had been available). Other than that, similar to
linux only having twice of its buffer limit.
Cleanup check-cfg handling in core and std
Follow-up to https://github.com/rust-lang/rust/pull/125296 where we:
- expect any feature cfg in std, due to `#[path]` imports
- move some check-cfg args inside the `build.rs` as per Cargo recommendation
- and replace the fake Cargo feature `"restricted-std"` by the custom cfg `restricted_std`
Fixes https://github.com/rust-lang/rust/pull/125296#issuecomment-2127009301
r? `@bjorn3` (maybe, feel free to re-roll)
Don't suggest adding the unexpected cfgs to the build-script it-self
This PR adds a check to avoid suggesting to add the unexpected cfgs inside the build-script when building the build-script it-self, as it won't have any effect, since build-scripts applies to their descended target.
Fixes#125368
Actually use TAIT instead of emulating it
`core`'s `impl_fn_for_zst` macro is just a hacky way of emulating TAIT. TAIT has become stable enough to be used [in other places](e8fbd99128/library/std/src/backtrace.rs (L431)) inside the standard library, so let's use it in `core` as well.
rustc_codegen_llvm: add support for writing summary bitcode
Typical uses of ThinLTO don't have any use for this as a standalone file, but distributed ThinLTO uses this to make the linker phase more efficient. With clang you'd do something like `clang -flto=thin -fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o (full of bitcode) and foo.indexing.o (just the summary or index part of the bitcode). That's then usable by a two-stage linking process that's more friendly to distributed build systems like bazel, which is why I'm working on this area.
I talked some to `@teresajohnson` about naming in this area, as things seem to be a little confused between various blog posts and build systems. "bitcode index" and "bitcode summary" tend to be a little too ambiguous, and she tends to use "thin link bitcode" and "minimized bitcode" (which matches the descriptions in LLVM). Since the clang option is thin-link-bitcode, I went with that to try and not add a new spelling in the world.
Per `@dtolnay,` you can work around the lack of this by using `lld --thinlto-index-only` to do the indexing on regular .o files of bitcode, but that is a bit wasteful on actions when we already have all the information in rustc and could just write out the matching minimized bitcode. I didn't test that at all in our infrastructure, because by the time I learned that I already had this patch largely written.