Commit graph

7 commits

Author SHA1 Message Date
Ralf Jung
de3cbf3c56 make unsupported_calling_conventions a hard error 2024-10-20 15:22:21 +02:00
Tamme Dittrich
b6b6c12819 Update lint message for ABI not supported 2024-10-14 10:02:33 +02:00
Tamme Dittrich
867e776fa6 Also cover the new extern "C-cmse-nonsecure-entry" in tests 2024-09-23 14:20:41 +02:00
Tamme Dittrich
47293c1234 Check ABI target compatibility for function pointers
This check was previously only performed on functions not function pointers.

Co-authored-by: Folkert <folkert@folkertdev.nl>
2024-09-23 14:04:22 +02:00
Nikita Popov
8a50bcbdce Remove extern "wasm" ABI
Remove the unstable `extern "wasm"` ABI (`wasm_abi` feature tracked
in #83788).

As discussed in https://github.com/rust-lang/rust/pull/127513#issuecomment-2220410679
and following, this ABI is a failed experiment that did not end
up being used for anything. Keeping support for this ABI in LLVM 19
would require us to switch wasm targets to the `experimental-mv`
ABI, which we do not want to do.

It should be noted that `Abi::Wasm` was internally used for two
things: The `-Z wasm-c-abi=legacy` ABI that is still used by
default on some wasm targets, and the `extern "wasm"` ABI. Despite
both being `Abi::Wasm` internally, they were not the same. An
explicit `extern "wasm"` additionally enabled the `+multivalue`
feature.

I've opted to remove `Abi::Wasm` in this patch entirely, instead
of keeping it as an ABI with only internal usage. Both
`-Z wasm-c-abi` variants are now treated as part of the normal
C ABI, just with different different treatment in
adjust_for_foreign_abi.
2024-07-11 12:20:26 +02:00
clubby789
f6b21e90d1 Remove the abi_amdgpu_kernel feature 2024-01-30 15:46:40 +00:00
Seth Pellegrino
897c7bb23b feat: riscv-interrupt-{m,s} calling conventions
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.

```rust
static mut CNT: usize = 0;

pub extern "riscv-interrupt-m" fn isr_m() {
    unsafe {
        CNT += 1;
    }
}
```

to produce highly effective assembly like:

```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0:       1141                    addi    sp,sp,-16
    unsafe {
        CNT += 1;
420003a2:       c62a                    sw      a0,12(sp)
420003a4:       c42e                    sw      a1,8(sp)
420003a6:       3fc80537                lui     a0,0x3fc80
420003aa:       63c52583                lw      a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae:       0585                    addi    a1,a1,1
420003b0:       62b52e23                sw      a1,1596(a0)
    }
}
420003b4:       4532                    lw      a0,12(sp)
420003b6:       45a2                    lw      a1,8(sp)
420003b8:       0141                    addi    sp,sp,16
420003ba:       30200073                mret
```

(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)

This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.

At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).

This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].

Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.

Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).

[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
2023-08-08 18:09:56 -07:00