Clarify language around ptrs in slice::raw
More specifically we explicitly mention that the pointer should be non-null as a top level requirement. Nullptrs are always valid for zero sized operations, so just validity (and alignment) does not guarantee non-nullness as implied in the existing docs.
We also explicitly call out ZSTs as an additional example where perhaps unintuitively alignment and non-nullness still have to hold.
Finally we change `data` in the range functions to `start`, which seems like a typo to me.
Touches docs for #89792
r? RalfJung
compiler_fence documentation: emphasize synchronization, not reordering
Our `fence` docs have at some point been update to explain that they are about synchronization, not about "preventing reordering". This updates the `compiler_fence` docs n the same vein, mostly by referring to the `fence` docs.
The old docs make it sound like I can put a compiler_fence in the middle of a bunch of non-atomic operations and that would achieve any kind of guarantee. It does not, atomic operations are still required to do synchronization.
I also slightly tweaked the `fence` docs, to put the synchronization first and the "prevent reordering" second.
Cc `@rust-lang/opsem` `@chorman0773` `@m-ou-se`
Fixes https://github.com/rust-lang/rust/issues/129189
Fixes https://github.com/rust-lang/rust/issues/54962
Rollup of 9 pull requests
Successful merges:
- #127474 (doc: Make block of inline Deref methods foldable)
- #129678 (Deny imports of `rustc_type_ir::inherent` outside of type ir + new trait solver)
- #129738 (`rustc_mir_transform` cleanups)
- #129793 (add extra linebreaks so rustdoc can identify the first sentence)
- #129804 (Fixed some typos in the standard library documentation/comments)
- #129837 (Actually parse stdout json, instead of using hacky contains logic.)
- #129842 (Fix LLVM ABI NAME for riscv64imac-unknown-nuttx-elf)
- #129843 (Mark myself as on vacation for triagebot)
- #129858 (Replace walk with visit so we dont skip outermost expr kind in def collector)
Failed merges:
- #129777 (Add `unreachable_pub`, round 4)
- #129868 (Remove kobzol vacation status)
r? `@ghost`
`@rustbot` modify labels: rollup
add extra linebreaks so rustdoc can identify the first sentence
there should probably be a lint against this in rustdoc, it causes too many lines to be shown in the short documentation overviews
expecially noticable for the slice primative type: https://doc.rust-lang.org/std/index.html
Apply size optimizations to panic machinery and some cold functions
* std dependencies gimli and addr2line are now built with opt-level=s
* various panic-related methods and `#[cold]` methods are now marked `#[optimize(size)]`
Panics should be cold enough that it doesn't make sense to optimize them for speed. The only tradeoff here is if someone does a lot of backtrace captures (without panics) and printing then the opt-level change might impact their perf.
Seems to be the first use of the optimize attribute. Tracking issue #54882
there should probably be a lint against this in rustdoc, it causes
too many lines to be shown in the short documentation overviews
expecially noticable for the slice primative type:
https://doc.rust-lang.org/std/index.html
add `aarch64_unknown_nto_qnx700` target - QNX 7.0 support for aarch64le
This backports the QNX 7.1 aarch64 implementation to 7.0.
* [x] required `-lregex` disabled, see https://github.com/rust-lang/libc/pull/3775 (released in libc 0.2.156)
* [x] uses `libgcc.a` instead of `libgcc_s.so` (7.0 used ancient GCC 5.4 which didn't have gcc_s)
* [x] a fix in `backtrace` crate to support stack traces https://github.com/rust-lang/backtrace-rs/pull/648
This PR bumps libc dependency to 0.2.158
CC: to the folks who did the [initial implementation](https://doc.rust-lang.org/rustc/platform-support/nto-qnx.html): `@flba-eb,` `@gh-tr,` `@jonathanpallant,` `@japaric`
# Compile target
```bash
# Configure qcc build environment
source _path_/_to_/qnx7.0/qnxsdp-env.sh
# Tell rust to use qcc when building QNX 7.0 targets
export build_env='
CC_aarch64-unknown-nto-qnx700=qcc
CFLAGS_aarch64-unknown-nto-qnx700=-Vgcc_ntoaarch64le_cxx
CXX_aarch64-unknown-nto-qnx700=qcc
AR_aarch64_unknown_nto_qnx700=ntoaarch64-ar'
# Build rust compiler, libs, and the remote test server
env $build_env ./x.py build \
--target x86_64-unknown-linux-gnu,aarch64-unknown-nto-qnx700 \
rustc library/core library/alloc library/std src/tools/remote-test-server
rustup toolchain link stage1 build/host/stage1
```
# Compile "hello world"
```bash
source _path_/_to_/qnx7.0/qnxsdp-env.sh
cargo new hello_world
cd hello_world
cargo +stage1 build --release --target aarch64-unknown-nto-qnx700
```
# Configure a remote for testing
Do this from a new shell - we will need to run more commands in the previous one. I ran into these two issues, and found some workarounds.
* Temporary dir might not work properly
* Default `remote-test-server` has issues binding to an address
```
# ./remote-test-server
starting test server
thread 'main' panicked at src/tools/remote-test-server/src/main.rs:175:29:
called `Result::unwrap()` on an `Err` value: Os { code: 249, kind: AddrNotAvailable, message: "Can't assign requested address" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
Specifying `--bind` param actually fixes that, and so does setting `TMPDIR` properly.
```bash
# Copy remote-test-server to remote device. You may need to use sftp instead.
# ATTENTION: Note that the path is different from the one in the remote testing documentation for some reason
scp ./build/x86_64-unknown-linux-gnu/stage1-tools-bin/remote-test-server qnxdevice:/path/
# Run ssh with port forwarding - so that rust tester can connect to the local port instead
ssh -L 12345:127.0.0.1:12345 qnxdevice
# on the device, run
rm -rf tmp && mkdir -p tmp && TMPDIR=$PWD/tmp ./remote-test-server --bind 0.0.0.0:12345
```
# Run test suit
Assume all previous environment variables are still set, or re-init them
```bash
export TEST_DEVICE_ADDR="localhost:12345"
# tidy needs to be skipped due to using un-published libc dependency
export exclude_tests='
--exclude src/bootstrap
--exclude src/tools/error_index_generator
--exclude src/tools/linkchecker
--exclude src/tools/tidy
--exclude tests/ui-fulldeps
--exclude rustc
--exclude rustdoc
--exclude tests/run-make-fulldeps'
env $build_env ./x.py test $exclude_tests --stage 1 --target aarch64-unknown-nto-qnx700
```
try-job: dist-x86_64-msvc
refactor: standardize duplicate processes in parser
## Summary
This PR refactors the `read_number` function to standardize duplicate code, improve readability, and enhance efficiency.
## Changes
- Merged the logic for both `max_digits` cases into a single `read_atomically` closure
- Simplified control flow and reduced code duplication
core: use `compare_bytes` for more slice element types
`bool`, `NonZero<u8>`, `Option<NonZero<u8>>` and `ascii::Char` can be compared the same way as `u8`.
Rollup of 11 pull requests
Successful merges:
- #128523 (Add release notes for 1.81.0)
- #129605 (Add missing `needs-llvm-components` directives for run-make tests that need target-specific codegen)
- #129650 (Clean up `library/profiler_builtins/build.rs`)
- #129651 (skip stage 0 target check if `BOOTSTRAP_SKIP_TARGET_SANITY` is set)
- #129684 (Enable Miri to pass pointers through FFI)
- #129762 (Update the `wasm-component-ld` binary dependency)
- #129782 (couple more crash tests)
- #129816 (tidy: say which feature gate has a stability issue mismatch)
- #129818 (make the const-unstable-in-stable error more clear)
- #129824 (Fix code examples buttons not appearing on click on mobile)
- #129826 (library: Fix typo in `core::mem`)
r? `@ghost`
`@rustbot` modify labels: rollup
Clean up `library/profiler_builtins/build.rs`
This PR makes a series of improvements to the long-neglected build script for `profiler_builtins`.
Most notably:
- The logic that silently skips missing source files has been removed, since it is currently unnecessary and makes build errors more confusing.
- The script now emits `cargo::rerun-if-changed` directives for the `compiler-rt` source and include directories.
Compiler behaviour and user programs should be unaffected by these changes.
wasi: Fix sleeping for `Duration::MAX`
This commit fixes an assert in the WASI-specific implementation of thread sleep to ensure that sleeping for a very large period of time blocks instead of panicking. This can come up when testing programs that sleep "forever", for example.
I'll note that I haven't included a test for this since it's sort of difficult to test. I've tested this locally though that long sleeps do indeed block and short sleeps still only sleep for a short amount of time.
Bump backtrace to 0.3.74~ish
Commit: https://github.com/rust-lang/backtrace-rs/commit/230570f
This should help with backtraces on Android, QNX NTO 7.0, and Windows.
It addresses a case of backtrace incurring undefined behavior on Android.
Re-enable android tests/benches in alloc/core
This is basically a revert of https://github.com/rust-lang/rust/pull/73729. These tests better work on android now; it's been 4 years and we don't use dlmalloc on that target anymore.
And I've validated that they should pass now with a try-build :)
This commit fixes an assert in the WASI-specific implementation of
thread sleep to ensure that sleeping for a very large period of time
blocks instead of panicking. This can come up when testing programs that
sleep "forever", for example.
debug-fmt-detail option
I'd like to propose a new option that makes `#[derive(Debug)]` generate no-op implementations that don't print anything, and makes `{:?}` in format strings a no-op.
There are a couple of motivations for this:
1. A more thorough stripping of debug symbols. Binaries stripped of debug symbols still retain some of them through `Debug` implementations. It's hard to avoid that without compiler's help, because debug formatting can be used in many places, including dependencies, and their loggers, asserts, panics, etc.
* In my testing it gives about 2% binary size reduction on top of all other binary-minimizing best practices (including `panic_immediate_abort`). There are targets like Web WASM or embedded where users pay attention to binary sizes.
* Users distributing closed-source binaries may not want to "leak" any symbol names as a matter of principle.
2. Adds ability to test whether code depends on specifics of the `Debug` format implementation in unwise ways (e.g. trying to get data unavailable via public interface, or using it as a serialization format). Because current Rust's debug implementation doesn't change, there's a risk of it becoming a fragile de-facto API that [won't be possible to change in the future](https://www.hyrumslaw.com/). An option that "breaks" it can act as a [grease](https://www.rfc-editor.org/rfc/rfc8701.html).
This implementation is a `-Z fmt-debug=opt` flag that takes:
* `full` — the default, current state.
* `none` — makes derived `Debug` and `{:?}` no-ops. Explicit `impl Debug for T` implementations are left unharmed, but `{:?}` format won't use them, so they may get dead-code eliminated if they aren't invoked directly.
* `shallow` — makes derived `Debug` print only the type's name, without recursing into fields. Fieldless enums print their variant names. `{:?}` works.
The `shallow` option is a compromise between minimizing the `Debug` code, and compatibility. There are popular proc-macro crates that use `Debug::fmt` as a way to convert enum values into their Rust source code.
There's a corresponding `cfg` flag: `#[cfg(fmt_debug = "none")]` that can be used in user code to react to this setting to minimize custom `Debug` implementations or remove unnecessary formatting helper functions.
* Use a lookup table for 8-bit integers and the Karatsuba square root
algorithm for larger integers.
* Include optimization hints that give the compiler the exact numeric
range of results.
* Choose test inputs more thoroughly and systematically.
* Check that `isqrt` and `checked_isqrt` have equivalent results for
signed types, either equivalent numerically or equivalent as a panic
and a `None`.
* Check that `isqrt` has numerically-equivalent results for unsigned
types and their `NonZero` counterparts.
* Reuse `ilog10` benchmarks, plus benchmarks that use a uniform
distribution.
copysign with sign being a NaN can have non-portable results
Follow-up to https://github.com/rust-lang/rust/pull/129559.
Cc ```@tgross35``` ```@beetrees```
There's no portable variant we can recommend instead here, is there? Something with a semantics like "if `sign` is a NaN, then return `self` unaltered, otherwise return `self` with the sign changed to that of `sign`"?
Add fmt::Debug to sync::Weak<T, A>
Currently, `sync::Weak<T>` implements `Debug`, but `sync::Weak<T, A>` does not. This appears to be an oversight, as `rc::Weak<T, A>` implements `Debug`. (Note: `sync::Weak` is the weak for `Arc`, and `rc::Weak` is the weak for `Rc`.)
This PR adds the Debug trait for `sync::Weak<T, A>`. The issue was initially brought up here: https://github.com/rust-lang/wg-allocators/issues/131
Clean up cfg-gating of ProcessPrng extern
This removes a bit of duplication and is consistent with how `api-ms-win-core-synch-l1-2-0` externs are imported.
rustc_target: Add various aarch64 features
Add various aarch64 features already supported by LLVM and Linux.
Additionally include some comment fixes to ensure consistency of feature names with the Arm ARM.
Compiler support for features added to stdarch by https://github.com/rust-lang/stdarch/pull/1614.
Tracking issue for unstable aarch64 features is https://github.com/rust-lang/rust/issues/127764.
List of added features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
FEAT_FPMR is added in the first commit and then removed in a separate one to highlight it being removed from upstream LLVM 19. The intention is for it to be detectable at runtime through stdarch but not have a corresponding Rust compile-time feature.