Revision-related tweaks for next-solver tests
1. Add `ignore-compare-mode-next-solver` to any test that already has explicit `current next` revisions, since the test failures when testing with `--compare-mode=next-solver` will be false positives.
2. Explicitly add revisions to a handful of tests where we expect behavior to diverge.
r? lcnr
Merge `collect_mod_item_types` query into `check_well_formed`
follow-up to https://github.com/rust-lang/rust/pull/121154
this removes more potential parallel-compiler bottlenecks and moves diagnostics for the same items next to each other, instead of grouping diagnostics by analysis kind
Don't require specifying unrelated assoc types when trait alias is in `dyn` type
Object types must specify the associated types for all of the principal trait ref's supertraits. However, we weren't doing elaboration properly, so we incorrectly errored with erroneous suggestions to specify associated types that were unrelated to that principal trait ref. To fix this, use proper supertrait elaboration when expanding trait aliases in `conv_object_ty_poly_trait_ref`.
**NOTE**: Please use the ignore-whitespace option when reviewing. This only touches a handful of lines.
r? oli-obk or please feel free to reassign.
Fixes#122118
This commit is extracted from #122036 and adds a new directive to the
`compiletest` test runner, `//@ needs-threads`. This is intended to
capture the need that a target must implement threading to execute a
specific test, typically one that uses `std::thread`. This is primarily
done for WebAssembly targets which currently do not have threads by
default. This enables transitioning a lot of `//@ ignore-wasm*`-style
ignores into a more self-documenting `//@ needs-threads` directive.
Additionally the `wasm32-wasi-preview1-threads` target, for example,
does actually have threads, but isn't tested in CI at this time. This
change enables running these tests for that target, but not other wasm
targets.
stricter hidden type wf-check [based on #115008]
Original work by `@aliemjay` in #115008. A huge thanks to them for originally figuring out this approach ❤️
Fixes https://github.com/rust-lang/rust/issues/114728
Fixes https://github.com/rust-lang/rust/issues/114572
Instead of adding the `WellFormed` obligations when relating opaque types, we now always emit such an obligation when defining the hidden type.
This causes nested opaque types which aren't wf to error, see the comment below for the described impact. I believe this change to be desirable as it significantly reduces complexity by removing special-cases.
It also caused an issue with RPITIT: in defaulted trait methods, we add a `Projection(synthetic_assoc, rpit_of_trait_method)` clause to the `param_env`. This clause is not added to the `ParamEnv` of the nested coroutines. This caused a normalization failure in `fn check_coroutine_obligations` with the new solver. I fixed that by using the env of the typeck root instead.
r? `@oli-obk`
Use root obligation on E0277 for some cases
When encountering trait bound errors that satisfy some heuristics that tell us that the relevant trait for the user comes from the root obligation and not the current obligation, we use the root predicate for the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the most specific case that just happened to fail, like "char doesn't implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid talking about `&mut T: Trait` and instead remain talking about `T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs to change), cc #121398 (doesn't fix the underlying issue).
When encountering trait bound errors that satisfy some heuristics that
tell us that the relevant trait for the user comes from the root
obligation and not the current obligation, we use the root predicate for
the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the
most specific case that just happened to fail, like "char doesn't
implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type
from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid
talking about `&mut T: Trait` and instead remain talking about
`T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in
`tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs
to change).
Account for unmet T: !Copy in E0277 message
```
error[E0277]: the trait bound `T: !Copy` is not satisfied
--> $DIR/simple.rs:10:16
|
LL | not_copy::<T>();
| ^ the trait bound `T: !Copy` is not satisfied
```
instead of the current
```
error[E0277]: the trait bound `T: !Copy` is not satisfied
--> $DIR/simple.rs:10:16
|
LL | not_copy::<T>();
| ^ the trait `!Copy` is not implemented for `T`
```
Display short types for unimplemented trait
Shortens unimplemented trait diagnostics. Now shows:
```
error[E0277]: `Option<Option<Option<...>>>` doesn't implement `std::fmt::Display`
--> $DIR/on_unimplemented_long_types.rs:4:17
|
LL | pub fn foo() -> impl std::fmt::Display {
| ^^^^^^^^^^^^^^^^^^^^^^ `Option<Option<Option<...>>>` cannot be formatted with the default formatter
LL |
LL | / Some(Some(Some(Some(Some(Some(Some(Some(Some(S...
LL | | Some(Some(Some(Some(Some(Some(Some(Some(So...
LL | | Some(Some(Some(Some(Some(Some(Some(Som...
LL | | Some(Some(Some(Some(Some(Some(Some...
... |
LL | | ))))))))))),
LL | | )))))))))))
| |_______________- return type was inferred to be `Option<Option<Option<...>>>` here
|
= help: the trait `std::fmt::Display` is not implemented for `Option<Option<Option<...>>>`
= note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
error: aborting due to 1 previous error
For more information about this error, try `rustc --explain E0277`.
```
I'm not 100% sure if this is desirable, or if we should just let the long types remain long. This is also kinda a short-term bandaid solution. The real long term solution is to properly migrate `rustc_trait_selection`'s error reporting to use translatable diagnostics and then properly handle type name printing.
Fixes#121687.
Provide suggestions through `rustc_confusables` annotations
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
Fix#59450 (we can open subsequent tickets for specific cases).
Fix#108437:
```
error[E0599]: `Option<{integer}>` is not an iterator
--> f101.rs:3:9
|
3 | opt.flat_map(|val| Some(val));
| ^^^^^^^^ `Option<{integer}>` is not an iterator
|
::: /home/gh-estebank/rust/library/core/src/option.rs:571:1
|
571 | pub enum Option<T> {
| ------------------ doesn't satisfy `Option<{integer}>: Iterator`
|
= note: the following trait bounds were not satisfied:
`Option<{integer}>: Iterator`
which is required by `&mut Option<{integer}>: Iterator`
help: you might have meant to use `and_then`
|
3 | opt.and_then(|val| Some(val));
| ~~~~~~~~
```
On type error of method call arguments, look at confusables for suggestion. Fix#87212:
```
error[E0308]: mismatched types
--> f101.rs:8:18
|
8 | stuff.append(Thing);
| ------ ^^^^^ expected `&mut Vec<Thing>`, found `Thing`
| |
| arguments to this method are incorrect
|
= note: expected mutable reference `&mut Vec<Thing>`
found struct `Thing`
note: method defined here
--> /home/gh-estebank/rust/library/alloc/src/vec/mod.rs:2025:12
|
2025 | pub fn append(&mut self, other: &mut Self) {
| ^^^^^^
help: you might have meant to use `push`
|
8 | stuff.push(Thing);
| ~~~~
```
remove `sub_relations` from the `InferCtxt`
While doing so, I tried to remove the `delay_span_bug` in `rematch_impl` again, which lead me to discover another `freshen` bug, fixing that one in the second commit. See commit descriptions for the reasoning behind each change.
r? `@compiler-errors`
Do not provide a structured suggestion when the arguments don't match.
```
error[E0599]: no method named `test_mut` found for struct `Vec<{integer}>` in the current scope
--> $DIR/auto-ref-slice-plus-ref.rs:7:7
|
LL | a.test_mut();
| ^^^^^^^^
|
= help: items from traits can only be used if the trait is implemented and in scope
note: `MyIter` defines an item `test_mut`, perhaps you need to implement it
--> $DIR/auto-ref-slice-plus-ref.rs:14:1
|
LL | trait MyIter {
| ^^^^^^^^^^^^
help: there is a method `get_mut` with a similar name, but with different arguments
--> $SRC_DIR/core/src/slice/mod.rs:LL:COL
```
Consider methods beyond inherent ones when suggesting typos.
```
error[E0599]: no method named `owned` found for reference `&dyn Foo` in the current scope
--> $DIR/object-pointer-types.rs:11:7
|
LL | fn owned(self: Box<Self>);
| --------- the method might not be found because of this arbitrary self type
...
LL | x.owned();
| ^^^^^ help: there is a method with a similar name: `to_owned`
```
Fix#101013.
No need to `validate_alias_bound_self_from_param_env` in `assemble_alias_bound_candidates`
We already fully normalize the self type before we reach `assemble_alias_bound_candidates`, so there's no reason to double check that a projection is truly rigid by checking param-env bounds.
I think this is also blocked on us making sure to always normalize opaques: #120549.
r? lcnr