Automatically taint InferCtxt when errors are emitted
r? `@nnethercote`
Basically `InferCtxt::dcx` now returns a `DiagCtxt` that refers back to the `Cell<Option<ErrorGuaranteed>>` of the `InferCtxt` and thus when invoking `Diag::emit`, and the diagnostic is an error, we taint the `InferCtxt` directly.
That change on its own has no effect at all, because `InferCtxt` already tracks whether errors have been emitted by recording the global error count when it gets opened, and checking at the end whether the count changed. So I removed that error count check, which had a bit of fallout that I immediately fixed by invoking `InferCtxt::dcx` instead of `TyCtxt::dcx` in a bunch of places.
The remaining new errors are because an error was reported in another query, and never bubbled up. I think they are minor enough for this to be ok, and sometimes it actually improves diagnostics, by not silencing useful diagnostics anymore.
fixes#126485 (cc `@olafes)`
There are more improvements we can do (like tainting in hir ty lowering), but I would rather do that in follow up PRs, because it requires some refactorings.
Fix `...` in multline code-skips in suggestions
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was inconsistent with what we do in every other case *and* off-center.
Fix assertion failure for some `Expect` diagnostics.
In #120699 I moved some code dealing with `has_future_breakage` earlier in `emit_diagnostic`. Issue #126521 identified a case where that reordering was invalid (leading to an assertion failure) for some `Expect` diagnostics.
This commit partially undoes the change, by moving the handling of unstable `Expect` diagnostics earlier again. This makes `emit_diagnostic` a bit uglier, but is necessary to fix the problem.
Fixes#126521.
r? ``@oli-obk``
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was consistent with what we do in every other case.
In #120699 I moved some code dealing with `has_future_breakage` earlier
in `emit_diagnostic`. Issue #126521 identified a case where that
reordering was invalid (leading to an assertion failure) for some `Expect`
diagnostics.
This commit partially undoes the change, by moving the handling of
unstable `Expect` diagnostics earlier again. This makes
`emit_diagnostic` a bit uglier, but is necessary to fix the problem.
Fixes#126521.
Most modules have such a blank line, but some don't. Inserting the blank
line makes it clearer that the `//!` comments are describing the entire
module, rather than the `use` declaration(s) that immediately follows.
[perf] Delay the construction of early lint diag structs
Attacks some of the perf regressions from https://github.com/rust-lang/rust/pull/124417#issuecomment-2123700666.
See individual commits for details. The first three commits are not strictly necessary.
However, the 2nd one (06bc4fc671, *Remove `LintDiagnostic::msg`*) makes the main change way nicer to implement.
It's also pretty sweet on its own if I may say so myself.
With the removal of `LintDiagnostic::msg` / the `msg` param from
lint diag APIs, primary messages for lint diags are always constructed
lazily inside decorator fns rendering this wrapper type unused / useless.
* instead simply set the primary message inside the lint decorator functions
* it used to be this way before [#]101986 which introduced `msg` to prevent
good path delayed bugs (which no longer exist) from firing under certain
circumstances when lints were suppressed / silenced
* this is no longer necessary for various reasons I presume
* it shaves off complexity and makes further changes easier to implement
There are a few common abbreviations like `use rustc_ast as ast` and
`use rust_hir as hir` for names that are used a lot. But there are also
some cases where a crate is renamed just once in the whole codebase, and
that ends up making things harder to read rather than easier. This
commit removes them.
Remove many `#[macro_use] extern crate foo` items
This requires the addition of more `use` items, which often make the code more verbose. But they also make the code easier to read, because `#[macro_use]` obscures where macros are defined.
r? `@fee1-dead`
Fix substitution parts having a shifted underline in some cases
If two suggestions parts are side by side, the underline's offset:
(WIP PR as an example, not yet pushed)
```
error: expected a pattern, found an expression
--> ./main.rs:4:9
|
4 | 1 + 2 => 3
| ^^^^^ arbitrary expressions are not allowed in patterns
|
help: check the value in an arm guard
|
4 | n if n == 1 + 2 => 3
| ~ +++++++++++++
```
The emitter didn't take into account that the string had shrunk/grown if two substitution parts were side-by-side (surprisingly, there was only one case in the ui testsuite.)
```
help: check the value in an arm guard
|
4 | n if n == 1 + 2 => 3
| ~ +++++++++++++
```
``@rustbot`` label +A-suggestion-diagnostics
Check `x86_64` size assertions on `aarch64`, too
(Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Checking.20size.20assertions.20on.20aarch64.3F)
Currently the compiler has around 30 sets of `static_assert_size!` for various size-critical data structures (e.g. various IR nodes), guarded by `#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]`.
(Presumably this cfg avoids having to maintain separate size values for 32-bit targets and unusual 64-bit targets. Apparently it may have been necessary before the i128/u128 alignment changes, too.)
This is slightly incovenient for people on aarch64 workstations (e.g. Macs), because the assertions normally aren't checked until we push to a PR. So this PR adds `aarch64` to the `#[cfg(..)]` guarding all of those assertions in the compiler.
---
Implemented with a simple find/replace. Verified by manually inspecting each `static_assert_size!` in `compiler/`, and checking that either the replacement succeeded, or adding aarch64 wouldn't have been appropriate.
Better reporting on generic argument mismatchs
This allows better reporting as per issue #116615 .
If you have a function:
```
fn foo(a: T, b: T) {}
```
and call it like so:
```
foo(1, 2.)
```
it'll give improved error reported similar to the following:
```
error[E0308]: mismatched types
--> generic-mismatch-reporting-issue-116615.rs:6:12
|
6 | foo(1, 2.);
| --- - ^^ expected integer, found floating-point number
| | |
| | expected argument `b` to be an integer because that argument needs to match the type of this parameter
| arguments to this function are incorrect
|
note: function defined here
--> generic-mismatch-reporting-issue-116615.rs:1:4
|
1 | fn foo<T>(a: T, b: T) {}
| ^^^ - ---- ----
| | | |
| | | this parameter needs to match the integer type of `a`
| | `b` needs to match the type of this parameter
| `a` and `b` all reference this parameter T
```
Open question, do we need to worry about error message translation into other languages? Not sure what the status of that is in Rust.
NB: Needs some checking over and some tests have altered that need sanity checking, but overall this is starting to get somewhere now. Will take out of draft PR status when this has been done, raising now to allow feedback at this stage, probably 90% ready.
conditionally ignore fatal diagnostic in the SilentEmitter
This change is primarily meant to allow rustfmt to ignore all diagnostics when using the `SilentEmitter`. Back in #121301 the `SilentEmitter` was shared between rustc and rustfmt. This changed rustfmt's behavior from ignoring all diagnostic to emitting fatal diagnostics, which lead to https://github.com/rust-lang/rustfmt/issues/6109.
These changes allow rustfmt to maintain its previous behaviour when using the `SilentEmitter`, while allowing rustc code to still emit fatal diagnostics.