Mark `char::make_ascii_uppercase` and `char::make_ascii_lowercase` as const.
Relevant tracking issue: #130698
The `make_ascii_uppercase` and `make_ascii_lowercase` methods in `char` should be marked "const."
With the stabilisation of [`const_mut_refs`](https://github.com/rust-lang/rust/issues/57349/), this simply requires adding the `const` specifier to the function signatures.
fix rustc_nonnull_optimization_guaranteed docs
As far as I can tell, even back when this was [added](https://github.com/rust-lang/rust/pull/60300) it never *enabled* any optimizations. It just indicates that the FFI compat lint should accept those types for NPO.
Rollup of 5 pull requests
Successful merges:
- #130648 (move enzyme flags from general cargo to rustc-specific cargo)
- #130650 (Fixup Apple target's description strings)
- #130664 (Generate line numbers for non-rust code examples as well)
- #130665 (Prevent Deduplication of `LongRunningWarn`)
- #130669 (tests: Test that `extern "C" fn` ptrs lint on slices)
r? `@ghost`
`@rustbot` modify labels: rollup
tests: Test that `extern "C" fn` ptrs lint on slices
This seems to have slipped past the `improper_ctypes_definitions` lint at some point. I found similar tests but not one with this exact combination, so test the semi-unique combination.
Prevent Deduplication of `LongRunningWarn`
Fixes#118612
As mention in the issue, `LongRunningWarn` is meant to be repeated multiple times.
Therefore, this PR stores a unique number in every instance of `LongRunningWarn` so that it's not hashed into the same value and omitted by the deduplication mechanism.
Fixup Apple target's description strings
Noticed this inconsistency in how the Apple target's had their new descriptions written while looking at https://github.com/rust-lang/rust/pull/130614, and figured it was easy enough to fixup shortly. I think prefixing every OS with `Apple` is clearer, especially for less known ones like `visionOS` and `watchOS`; so that's what was done here along with making the architecture names more consistent and then some other small tweaks.
~~r? `@thomcc~~`
cc `@madsmtm`
rustc_llvm: adapt to flattened CLI args in LLVM
This changed in
llvm/llvm-project@e190d074a0. I decided to stick with more duplication between the ifdef blocks to make the code easier to read for the next two years before we can plausibly drop LLVM 19.
`@rustbot` label: +llvm-main
try-job: x86_64-msvc
rustc_expand: remember module `#[path]`s during expansion
During invocation collection, if a module item parsed from a `#[path]` attribute needed a second pass after parsing, its path wouldn't get added to the file path stack, so cycle detection broke. This checks the `#[path]` in such cases, so that it gets added appropriately. I think it should work identically to the case for external modules that don't need a second pass, but I'm not 100% sure.
Fixes#97589
Fix anon const def-creation when macros are involved take 2
Fixes#130321
There were two cases that #129137 did not handle correctly:
- Given a const argument `Foo<{ bar!() }>` in which `bar!()` expands to `N`, we would visit the anon const and then visit the `{ bar() }` expression instead of visiting the macro call. This meant that we would build a def for the anon const as `{ bar!() }` is not a trivial const argument as `bar!()` is not a path.
- Given a const argument `Foo<{ bar!() }>` is which `bar!()` expands to `{ qux!() }` in which `qux!()` expands to `N`, it should not be considered a trivial const argument as `{{ N }}` has two pairs of braces. If we only looked at `qux`'s expansion it would *look* like a trivial const argument even though it is not. We have to track whether we have "unwrapped" a brace already when recursing into the expansions of `bar`/`qux`/any macro
r? `@camelid`
Assert that `explicit_super_predicates_of` and `explicit_item_super_predicates` truly only contains bounds for the type itself
We distinguish _implied_ predicates (anything that is implied from elaborating a trait bound) from _super_ predicates, which are are the subset of implied predicates that share the same self type as the trait predicate we're elaborating. This was originally done in #107614, which fixed a large class of ICEs and strange errors where the compiler expected the self type of a trait predicate not to change when elaborating super predicates.
Specifically, super predicates are special for various reasons: they're the valid candidates for trait upcasting, are the only predicates we elaborate when doing closure signature inference, etc. So making sure that we get this list correct and don't accidentally "leak" any other predicates into this list is quite important.
This PR adds some debug assertions that we're in fact not doing so, and it fixes an oversight in the effect desugaring rework.
ABI compatibility: mention Result guarantee
This has been already documented in https://doc.rust-lang.org/std/result/index.html#representation, but for `Option` we mirrored those docs in the "ABI compatibility" section, so let's do the same here.
Cc ``@workingjubilee`` ``@rust-lang/lang``
Add --enable-profiler to armhf dist
Adds the --enable-profiler flag to the RUST_CONFIGURE_ARGS for armhf distribution for Linux. This enables running coverage for tests in builds for this target
try-job: dist-armhf-linux
Avoid re-validating UTF-8 in `FromUtf8Error::into_utf8_lossy`
Part of the unstable feature `string_from_utf8_lossy_owned` - #129436
Refactor `FromUtf8Error::into_utf8_lossy` to copy valid UTF-8 bytes into the buffer, avoiding double validation of bytes.
Add tests that mirror the `String::from_utf8_lossy` tests.
Implement Return Type Notation (RTN)'s path form in where clauses
Implement return type notation (RTN) in path position for where clauses. We already had RTN in associated type position ([e.g.](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=627a4fb8e2cb334863fbd08ed3722c09)), but per [the RFC](https://rust-lang.github.io/rfcs/3654-return-type-notation.html#where-rtn-can-be-used-for-now):
> As a standalone type, RTN can only be used as the Self type of a where-clause [...]
Specifically, in order to enable code like:
```rust
trait Foo {
fn bar() -> impl Sized;
}
fn is_send(_: impl Send) {}
fn test<T>()
where
T: Foo,
T::bar(..): Send,
{
is_send(T::bar());
}
```
* In the resolver, when we see a `TyKind::Path` whose final segment is `GenericArgs::ParenthesizedElided` (i.e. `(..)`), resolve that path in the *value* namespace, since we're looking for a method.
* When lowering where clauses in HIR lowering, we first try to intercept an RTN self type via `lower_ty_maybe_return_type_notation`. If we find an RTN type, we lower it manually in a way that respects its higher-ranked-ness (see below) and resolves to the corresponding RPITIT. Anywhere else, we'll emit the same "return type notation not allowed in this position yet" error we do when writing RTN in every other position.
* In `resolve_bound_vars`, we add some special treatment for RTN types in where clauses. Specifically, we need to add new lifetime variables to our binders for the early- and late-bound vars we encounter on the method. This implements the higher-ranked desugaring [laid out in the RFC](https://rust-lang.github.io/rfcs/3654-return-type-notation.html#converting-to-higher-ranked-trait-bounds).
This PR also adds a bunch of tests, mostly negative ones (testing error messages).
In a follow-up PR, I'm going to mark RTN as no longer incomplete, since this PR basically finishes the impl surface that we should initially stabilize, and the RFC was accepted.
cc [RFC 3654](https://github.com/rust-lang/rfcs/pull/3654) and https://github.com/rust-lang/rust/issues/109417
add `extern "C-cmse-nonsecure-entry" fn`
tracking issue #75835
in https://github.com/rust-lang/rust/issues/75835#issuecomment-1183517255 it was decided that using an abi, rather than an attribute, was the right way to go for this feature.
This PR adds that ABI and removes the `#[cmse_nonsecure_entry]` attribute. All relevant tests have been updated, some are now obsolete and have been removed.
Error 0775 is no longer generated. It contains the list of targets that support the CMSE feature, and maybe we want to still use this? right now a generic "this abi is not supported on this platform" error is returned when this abi is used on an unsupported platform. On the other hand, users of this abi are likely to be experienced rust users, so maybe the generic error is good enough.