This just moves the server-relevant parts of handles into `server.rs`.
It introduces a new higher-order macro `with_api_handle_types` to avoid
some duplication.
This fixes two `FIXME` comments, and makes things clearer, by not having
server code in `client.rs`.
Those libraries are build with `-C panic=unwind` and is expected to
be linkable to `-C panic=abort` library. To ensure unsoundness
compiler needs to prevent a `C-unwind` call to exist, as doing so may leak
foreign exceptions into `-C panic=abort`.
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
#59450
Rename MaybeUninit::write_slice
A step to push #79995 forward.
https://github.com/rust-lang/libs-team/issues/122 also suggested to make them inherent methods, but they can't be — they'd conflict with slice's regular methods.
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
`tokenstream::Spacing` appears on all `TokenTree::Token` instances,
both punct and non-punct. Its current usage:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `Alone` means "cannot join with the next token *or* can join with the
next token but that token is not a punct".
The fact that `Alone` is used for two different cases is awkward.
This commit augments `tokenstream::Spacing` with a new variant
`JointHidden`, resulting in:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `JointHidden` means "can join with the next token *and* that token is a
not a punct".
- `Alone` means "cannot join with the next token".
This *drastically* improves the output of `print_tts`. For example,
this:
```
stringify!(let a: Vec<u32> = vec![];)
```
currently produces this string:
```
let a : Vec < u32 > = vec! [] ;
```
With this PR, it now produces this string:
```
let a: Vec<u32> = vec![] ;
```
(The space after the `]` is because `TokenTree::Delimited` currently
doesn't have spacing information. The subsequent commit fixes this.)
The new `print_tts` doesn't replicate original code perfectly. E.g.
multiple space characters will be condensed into a single space
character. But it's much improved.
`print_tts` still produces the old, uglier output for code produced by
proc macros. Because we have to translate the generated code from
`proc_macro::Spacing` to the more expressive `token::Spacing`, which
results in too much `proc_macro::Along` usage and no
`proc_macro::JointHidden` usage. So `space_between` still exists and
is used by `print_tts` in conjunction with the `Spacing` field.
This change will also help with the removal of `Token::Interpolated`.
Currently interpolated tokens are pretty-printed nicely via AST pretty
printing. `Token::Interpolated` removal will mean they get printed with
`print_tts`. Without this change, that would result in much uglier
output for code produced by decl macro expansions. With this change, AST
pretty printing and `print_tts` produce similar results.
The commit also tweaks the comments on `proc_macro::Spacing`. In
particular, it refers to "compound tokens" rather than "multi-char
operators" because lifetimes aren't operators.
Properly print cstr literals in `proc_macro::Literal::to_string`
Previously we printed the contents of the string, rather than the actual string literal (e.g. `the c string` instead of `c"the c string"`).
Fixes#112820
cc #105723
without this, the only way to create a `LitKind::Byte` is by
doing `"b'a'".parse::<Literal>()`, this solves that by enabling
`Literal::byte_character(b'a')`
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
The status quo is highly confusing, since the overlap is not apparent,
and specialization is not a feature of Rust. This addresses #87545;
I'm not certain if it closes it, since that issue might also be trackign
a *general* solution for hiding specializing impls automatically.
Added byte position range for `proc_macro::Span`
Currently, the [`Debug`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#impl-Debug-for-Span) implementation for [`proc_macro::Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) calls the debug function implemented in the trait implementation of `server::Span` for the type `Rustc` in the `rustc-expand` crate.
The current implementation, of the referenced function, looks something like this:
```rust
fn debug(&mut self, span: Self::Span) -> String {
if self.ecx.ecfg.span_debug {
format!("{:?}", span)
} else {
format!("{:?} bytes({}..{})", span.ctxt(), span.lo().0, span.hi().0)
}
}
```
It returns the byte position of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) as an interpolated string.
Because this is currently the only way to get a spans position in the file, I might lead someone, who is interested in this information, to parsing this interpolated string back into a range of bytes, which I think is a very non-rusty way.
The proposed `position()`, method implemented in this PR, gives the ability to directly get this info.
It returns a [`std::ops::Range`](https://doc.rust-lang.org/std/ops/struct.Range.html#) wrapping the lowest and highest byte of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#).
I put it behind the `proc_macro_span` feature flag because many of the other functions that have a similar footprint also are annotated with it, I don't actually know if this is right.
It would be great if somebody could take a look at this, thank you very much in advanced.