Give me a way to emit all the delayed bugs as errors (add `-Zeagerly-emit-delayed-bugs`)
This is probably a *better* way to inspect all the delayed bugs in a program that what exists currently (and therefore makes it very easy to choose the right number `N` with `-Zemit-err-as-bug=N`, though I guess the naming is a bit ironic when you pair both of the flags together, but that feels like naming bikeshed more than anything).
This pacifies my only concern with https://github.com/rust-lang/rust/pull/119871#issuecomment-1888170259, because (afaict?) that PR doesn't allow you to intercept a delayed bug's stack trace anymore, which as someone who debugs the compiler a lot, is something that I can *promise* that I do.
r? `@nnethercote` or `@oli-obk`
Remove special-casing around `AliasKind::Opaque` when structurally resolving in new solver
This fixes a few inconsistencies around where we don't eagerly resolve opaques to their (locally-defined) hidden types in the new solver. It essentially allows this code to work:
```rust
fn main() {
type Tait = impl Sized;
struct S {
i: i32,
}
let x: Tait = S { i: 0 };
println!("{}", x.i);
}
```
Since `Tait` is defined in `main`, we are able to poke through the type of `x` with deref.
r? lcnr
Exhaustiveness: track overlapping ranges precisely
The `overlapping_range_endpoints` lint has false positives, e.g. https://github.com/rust-lang/rust/issues/117648. I expected that removing these false positives would have too much of a perf impact but never measured it. This PR is an experiment to see if the perf loss is manageable.
r? `@ghost`
Register even erroneous impls
Otherwise the specialization graph fails to pick it up, even though other code assumes that all impl blocks have an entry in the specialization graph.
also includes an unrelated cleanup of the specialization graph query
fixes #119827
next solver: provisional cache
this adds the cache removed in #115843. However, it should now correctly track whether a provisional result depends on an inductive or coinductive stack.
While working on this, I was using the following doc: https://hackmd.io/VsQPjW3wSTGUSlmgwrDKOA. I don't think it's too helpful to understanding this, but am somewhat hopeful that the inline comments are more useful.
There are quite a few future perf improvements here. Given that this is already very involved I don't believe it is worth it (for now). While working on this PR one of my few attempts to significantly improve perf ended up being unsound again because I was not careful enough ✨
r? `@compiler-errors`
Remove `DiagnosticBuilder::buffer`
`DiagnosticBuilder::buffer` doesn't do much, and part of what it does (for `-Ztreat-err-as-bug`) it shouldn't.
This PR strips it back, replaces its uses, and finally removes it, making a few cleanups in the vicinity along the way.
r? ``@oli-obk``
Silence some follow-up errors [2/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
the `type_of` query frequently uses astconv to convert a `hir::Ty` to a `ty::Ty`. This process is infallible, but may produce errors as it goes. All the error reporting sites that had access to the `ItemCtxt` are now tainting it, causing `type_of` to return a `ty::Error` instead of anything else.
Stop mentioning internal lang items in no_std binary errors
When writing a no_std binary, you'll be greeted with nonsensical errors mentioning lang items like eh_personality and start. That's pretty bad because it makes you think that you need to define them somewhere! But oh no, now you're getting the `internal_features` lint telling you that you shouldn't use them! But you need a no_std binary! What now?
No problem! Writing a no_std binary is super easy. Just use panic=abort and supply your own platform specific entrypoint symbol (like `main`) and you're good to go. Would be nice if the compiler told you that, right?
This makes it so that it does do that.
I don't _love_ the new messages yet, but they're decent I think. They can probably be improved, please suggest improvements.
Errors in `DiagCtxtInner::emit_diagnostic` are never set to
`Level::Bug`, because the condition never succeeds, because
`self.treat_err_as_bug()` is called *before* the error counts are
incremented.
This commit switches to `self.treat_next_err_as_bug()`, fixing the
problem. This changes the error message output to actually say "internal
compiler error".
Silence some follow-up errors [1/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
When we use `-> impl SomeTrait<_>` as a return type, we are both using the "infer return type suggestion" code path, and the infer opaque type code path within the same function. That can lead to confusing diagnostics, so silence all opaque type diagnostics in that case.
When writing a no_std binary, you'll be greeted with nonsensical errors
mentioning lang items like eh_personality and start. That's pretty bad
because it makes you think that you need to define them somewhere! But
oh no, now you're getting the `internal_features` lint telling you that
you shouldn't use them! But you need a no_std binary! What now?
No problem! Writing a no_std binary is super easy. Just use panic=abort
and supply your own platform specific entrypoint symbol (like `main`)
and you're good to go. Would be nice if the compiler told you that,
right?
This makes it so that it does do that.
Avoid silencing relevant follow-up errors
r? `@matthewjasper`
This PR only adds new errors to tests that are already failing and fixes one ICE.
Several tests were changed to not emit new errors. I believe all of them were faulty tests, and not explicitly testing for the code that had new errors.
`~const` trait and projection bounds do not imply their non-const counterparts
This PR removes the hack where we install a non-const trait and projection bound for every `const_trait` and `~const` projection bound we have in the AST. It ends up messing up more things than it fixes, see words below.
Fixes#119718
cc `@fmease` `@fee1-dead` `@oli-obk`
r? fee1-dead or one of y'all i don't care
---
My understanding is that this hack was added to support the following code:
```rust
pub trait Owo<X = <Self as Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
Which is concretely lifted from in the `FromResidual` and `Try` traits. Since within the param-env of `trait Uwu`, we only know that `Self: ~const Uwu` and not `Self: Uwu`, the projection `<Self as Uwu>::T` is not satsifyable.
This causes problems such as #119718, since instantiations of `FnDef` types coming from `const fn` really do **only** implement one of `FnOnce` or `const FnOnce`!
---
In the long-term, I believe that such code should really look something more like:
```rust
#[const_trait]
pub trait Owo<X = <Self as ~const Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
... and that we should introduce some sort of `<T as ~const Foo>::Bar` bound syntax, since due to the fact that `~const` bounds can be present in item bounds, e.g.
```rust
#[const_trait] trait Foo { type Bar: ~const Destruct; }
```
It's easy to see that `<T as Foo>::Bar` and `<T as ~const Foo>::Bar` (or `<T as const Foo>::Bar`) can be distinct types with distinct item bounds!
**Admission**: I know I've said before that I don't like `~const` projection syntax, I do at this point believe they're necessary to fully express bounds and types in a maybe-const world.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`
Support async recursive calls (as long as they have indirection)
Before #101692, we stored coroutine witness types directly inside of the coroutine. That means that a coroutine could not contain itself (as a witness field) without creating a cycle in the type representation of the coroutine, which we detected with the `OpaqueTypeExpander`, which is used to detect cycles when expanding opaque types after that are inferred to contain themselves.
After `-Zdrop-tracking-mir` was stabilized, we no longer store these generator witness fields directly, but instead behind a def-id based query. That means there is no technical obstacle in the compiler preventing coroutines from containing themselves per se, other than the fact that for a coroutine to have a non-infinite layout, it must contain itself wrapped in a layer of allocation indirection (like a `Box`).
This means that it should be valid for this code to work:
```
async fn async_fibonacci(i: u32) -> u32 {
if i == 0 || i == 1 {
i
} else {
Box::pin(async_fibonacci(i - 1)).await
+ Box::pin(async_fibonacci(i - 2)).await
}
}
```
Whereas previously, you'd need to coerce the future to `Pin<Box<dyn Future<Output = ...>>` before `await`ing it, to prevent the async's desugared coroutine from containing itself across as await point.
This PR does two things:
1. Only report an error if an opaque expansion cycle is detected *not* through coroutine witness fields.
* Instead, if we find an opaque cycle through coroutine witness fields, we compute the layout of the coroutine. If that results in a cycle error, we report it as a recursive async fn.
4. Reworks the way we report layout errors having to do with coroutines, to make up for the diagnostic regressions introduced by (1.). We actually do even better now, pointing out the call sites of the recursion!
Adding alignment to the cases to test for specific error messages.
Adding alignment to the list of cases to test for specific error message. Covers `>`, `^` and `<`.
Pinging people who chimed in last time ( https://github.com/rust-lang/rust/pull/106805 ): ``@estebank`` , ``@compiler-errors`` and ``@Nilstrieb``
remove an unnecessary stderr-per-bitwidth
also update some regexp, `a(lloc)?` would no longer match now that we have compiletest itself do alloc ID normalization.
r? ````@oli-obk````