self-contained linker: retry linking without `-fuse-ld=lld` on CCs that don't support it
For the self-contained linker, this PR applies [the strategy](https://github.com/rust-lang/rust/issues/125330#issuecomment-2125119838) of retrying the linking step when the driver doesn't support `-fuse-ld=lld`, but with the option removed. This is the same strategy we already use of retrying when e.g. `-no-pie` is not supported.
Fixes#125330
r? `@petrochenkov`
I have no idea how we could add a test here, much like we don't have one for `-no-pie` or `-static-pie` -- let me know if you have ideas -- but I tested on a CentOS7 image:
```console
[root@d25b38376ede tmp]# ../build/host/stage1/bin/rustc helloworld.rs
WARN rustc_codegen_ssa:🔙:link The linker driver does not support `-fuse-ld=lld`. Retrying without it.
[root@d25b38376ede tmp]# readelf -p .comment helloworld
String dump of section '.comment':
[ 0] GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-44)
[ 2d] rustc version 1.80.0-dev
```
I wasn't able to test with `cross` as the issue describes: I wasn't able to reproduce that behavior locally.
* instead simply set the primary message inside the lint decorator functions
* it used to be this way before [#]101986 which introduced `msg` to prevent
good path delayed bugs (which no longer exist) from firing under certain
circumstances when lints were suppressed / silenced
* this is no longer necessary for various reasons I presume
* it shaves off complexity and makes further changes easier to implement
Stop using `to_hir_binop` in codegen
This came up in https://github.com/rust-lang/rust/pull/125359#discussion_r1609401311 , and looking into it we can just use the `mir::BinOp`s directly instead of `hir::BinOpKind`s.
(AKA rather than going `mir::BinOp` → `hir::BinOpKind` → `IntPredicate`, just go `mir::BinOp` → `IntPredicate`.)
Typical uses of ThinLTO don't have any use for this as a standalone
file, but distributed ThinLTO uses this to make the linker phase more
efficient. With clang you'd do something like `clang -flto=thin
-fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o
(full of bitcode) and foo.indexing.o (just the summary or index part of
the bitcode). That's then usable by a two-stage linking process that's
more friendly to distributed build systems like bazel, which is why I'm
working on this area.
I talked some to @teresajohnson about naming in this area, as things
seem to be a little confused between various blog posts and build
systems. "bitcode index" and "bitcode summary" tend to be a little too
ambiguous, and she tends to use "thin link bitcode" and "minimized
bitcode" (which matches the descriptions in LLVM). Since the clang
option is thin-link-bitcode, I went with that to try and not add a new
spelling in the world.
Per @dtolnay, you can work around the lack of this by using `lld
--thinlto-index-only` to do the indexing on regular .o files of
bitcode, but that is a bit wasteful on actions when we already have all
the information in rustc and could just write out the matching minimized
bitcode. I didn't test that at all in our infrastructure, because by the
time I learned that I already had this patch largely written.
Relax restrictions on multiple sanitizers
Most combinations of LLVM sanitizers are legal-enough to enable simultaneously. This change will allow simultaneously enabling ASAN and shadow call stacks on supported platforms.
I used this python script to generate the mutually-exclusive sanitizer combinations:
```python
#!/usr/bin/python3
import subprocess
flags = [
["-fsanitize=address"],
["-fsanitize=leak"],
["-fsanitize=memory"],
["-fsanitize=thread"],
["-fsanitize=hwaddress"],
["-fsanitize=cfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=memtag", "--target=aarch64-linux-android", "-march=armv8a+memtag"],
["-fsanitize=shadow-call-stack"],
["-fsanitize=kcfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=kernel-address"],
["-fsanitize=safe-stack"],
["-fsanitize=dataflow"],
]
for i in range(len(flags)):
for j in range(i):
command = ["clang++"] + flags[i] + flags[j] + ["-o", "main.o", "-c", "main.cpp"]
completed = subprocess.run(command, stderr=subprocess.DEVNULL)
if completed.returncode != 0:
first = flags[i][0][11:].replace('-', '').upper()
second = flags[j][0][11:].replace('-', '').upper()
print(f"(SanitizerSet::{first}, SanitizerSet::{second}),")
```
Rename Unsafe to Safety
Alternative to #124455, which is to just have one Safety enum to use everywhere, this opens the posibility of adding `ast::Safety::Safe` that's useful for unsafe extern blocks.
This leaves us today with:
```rust
enum ast::Safety {
Unsafe(Span),
Default,
// Safe (going to be added for unsafe extern blocks)
}
enum hir::Safety {
Unsafe,
Safe,
}
```
We would convert from `ast::Safety::Default` into the right Safety level according the context.
These types are currently rejected for `as` casts by the compiler.
Remove this incorrect check and add codegen tests for all conversions
involving these types.
I added `PlaceValue` in 123775, but kept that one line-by-line simple because it touched so many places.
This goes through to add more helpers & docs, and change some `PlaceRef` to `PlaceValue` where the type didn't need to be included.
No behaviour changes.
Avoid `alloca`s in codegen for simple `mir::Aggregate` statements
The core idea here is to remove the abstraction penalty of simple newtypes in codegen.
Even something simple like constructing a
```rust
#[repr(transparent)] struct Foo(u32);
```
forces an `alloca` to be generated in nightly right now.
Certainly LLVM can optimize that away, but it would be nice if it didn't have to.
Quick example:
```rust
#[repr(transparent)]
pub struct Transparent32(u32);
#[no_mangle]
pub fn make_transparent(x: u32) -> Transparent32 {
let a = Transparent32(x);
a
}
```
on nightly we produce <https://rust.godbolt.org/z/zcvoM79ae>
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
%a = alloca i32, align 4
store i32 %x, ptr %a, align 4
%0 = load i32, ptr %a, align 4, !noundef !3
ret i32 %0
}
```
but after this PR we produce
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
start:
ret i32 %x
}
```
(even before the optimizer runs).
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
rustc: Some small changes for the wasm32-wasip2 target
This commit has a few changes for the wasm32-wasip2 target. The first two are aimed at improving the compatibility of using `clang` as an external linker driver on this target. The default target to LLVM is updated to match the Rust target and additionally the `-fuse-ld=lld` argument is dropped since that otherwise interferes with clang's own linker detection. The only linker on wasm targets is LLD but on the wasip2 target a wrapper around LLD, `wasm-component-ld`, is used to drive the process and perform steps necessary for componentization.
The final commit changes the output of all objects on the wasip2 target to being PIC by default. This improves compatibilty with shared libaries but notably does not mean that there's a turnkey solution for shared libraries. The hope is that by having the standard libray work both with and without dynamic libraries will make experimentation easier.
Stop `llvm.expect`ing assert terminators
We're putting `llvm.expect` calls before the <https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.TerminatorKind.html#variant.Assert> terminators.
But we don't need them. One of the arms is always to a panic function that's marked `#[cold]`, which is `cold` <https://llvm.org/docs/LangRef.html#function-attributes> in LLVM, which
> When computing edge weights, basic blocks post-dominated by a cold function call are also considered to be cold; and, thus, given low weight.
So even without us emitting the extra intrinsic call, LLVM knows what to expect for the `br`. Thus we can save the (small) effort of emitting it and then LLVM optimizing it out.
r? compiler
This argument isn't necessary for WebAssembly targets since `wasm-ld` is
the only linker for the targets. Passing it otherwise interferes with
Clang's linker selection on `wasm32-wasip2` so avoid it altogether.
coverage: Clean up creation of MC/DC condition bitmaps
This PR improves the code for creating and initializing [MC/DC](https://en.wikipedia.org/wiki/Modified_condition/decision_coverage) condition bitmap variables, as introduced by #123409 and modified by #124255.
- The condition bitmap variables are now created eagerly at the start of per-function codegen, via a new `init_coverage` method in `CoverageInfoBuilderMethods`. This avoids having to retroactively create the bitmaps while doing codegen for an individual coverage statement.
- As a result, we can now create and initialize those bitmaps using existing safe APIs, instead of having to perform our own unsafe call to `llvm::LLVMBuildAlloca`.
- This PR also tweaks the way we count the number of condition bitmaps needed, by tracking the total number of bitmaps needed (max depth + 1), instead of only tracking the maximum depth. This reduces the potential for subtle off-by-one confusion.
remove extraneous note on `UnableToRunDsymutil` diagnostic
If I understand [this FIXME](1367827eac/compiler/rustc_macros/src/diagnostics/diagnostic.rs (L205)) correctly, it seems we don't yet validate subdiagnostics, so `#[note]` and co in the `#[derive(Diagnostic]` item could be out-of-sync with the fluent message, without causing compile errors.
It was the case for `rustc_codegen_ssa::errors::UnableToRunDsymutil`, causing the ICE in #124392.
I've grepped and scripted my way through most of our diagnostics structs and fluent bundles and the above was the only such extraneous `#[note]`/`#[note(name)]`/`#[help]`/`#[warning]` I could find, so hopefully there aren't many others like it.
I haven't checked if the opposite can happen, a `.note = ` in a fluent message that is lacking a corresponding `#[note]` on the struct and not causing an error, but maybe it's possible?
r? ``@davidtwco``
fixes#124392
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
It's a highly misleading name, because it's completely different to
`MetaItem::name_value_literal`. Specifically, it doesn't match
`MetaItemKind::NameValue` (e.g. `#[foo = 3]`), it matches
`MetaItemKind::List` (e.g. `#[foo(3)]`).
Stop using LLVM struct types for alloca
The alloca type has no semantic meaning, only the size (and alignment, but we specify it explicitly) matter. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout. It is likely that a future LLVM version will change to an untyped alloca representation.
Split out from #121577.
r? `@ghost`