nightly feature tracking: get rid of the per-feature bool fields
The `struct Features` that tracks which features are enabled has a ton of public `bool`-typed fields that are basically caching the result of looking up the corresponding feature in `enabled_lang_features`. Having public fields with an invariant is not great, so at least they should be made private. However, it turns out caching these lookups is actually [not worth it](https://github.com/rust-lang/rust/pull/131321#issuecomment-2402068336), so this PR just entirely gets rid of these fields. (The alternative would be to make them private and have a method for each of them to expose them in a read-only way. Most of the diff of this PR would be the same in that case.)
r? `@nnethercote`
do not implement `Relate` for "boring" types
and update some macros while we're at it. This means we don't have to implement `TypeVisitable` for them.
r? `@compiler-errors`
analyse: remove unused uncanonicalized field
This field is unused and was only relevant when actually printing proof trees. Right now this simply causes proof tree building to leak a bunch of inference vars 😁
r? ``@compiler-errors``
Represent `hir::TraitBoundModifiers` as distinct parts in HIR
Stop squashing distinct `polarity` and `constness` into a single `hir::TraitBoundModifier`.
This PR doesn't attempt to handle all the corner cases correctly, since the old code certainly did not either; but it should be much easier for, e.g., rustc devs working on diagnostics, or clippy devs, to actually handle constness and polarity correctly.
try-job: x86_64-gnu-stable
x86-32 float return for 'Rust' ABI: treat all float types consistently
This helps with https://github.com/rust-lang/rust/issues/131819: for our own ABI on x86-32, we want to *never* use the float registers. The previous logic only considered F32 and F64, but skipped F16 and F128. So I made the logic just apply to all float types.
try-job: i686-gnu
try-job: i686-gnu-nopt
Rollup of 8 pull requests
Successful merges:
- #125205 (Fixup Windows verbatim paths when used with the `include!` macro)
- #131049 (Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`)
- #131549 (Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function)
- #131731 (add `TestFloatParse` to `tools.rs` for bootstrap)
- #131732 (Add doc(plugins), doc(passes), etc. to INVALID_DOC_ATTRIBUTES)
- #132006 (don't stage-off to previous compiler when CI rustc is available)
- #132022 (Move `cmp_in_dominator_order` out of graph dominator computation)
- #132033 (compiletest: Make `line_directive` return a `DirectiveLine`)
r? `@ghost`
`@rustbot` modify labels: rollup
Move `cmp_in_dominator_order` out of graph dominator computation
Dominator-order information is only needed for coverage graphs, and is easy enough to collect by just traversing the graph again.
This avoids wasted work when computing graph dominators for any other purpose.
Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function
It's confusing to `?` a future of a result in a sync function. We have a suggestion to `.await` it if we're in an async function, but not a sync function. Note that this is the case for sync functions, at least.
Let's be a bit more vague about a fix, since it's somewhat context dependent. For example, you could block on it, or you could make your function asynchronous. 🤷
Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`
For the `Existential*` ones, we have to do some adjustment to the args list to deal with the missing `Self` type, so we introduce a `debug_assert_existential_args_compatible` function to the interner as well.
Fixup Windows verbatim paths when used with the `include!` macro
On Windows, the following code can fail if the `OUT_DIR` environment variable is a [verbatim path](https://doc.rust-lang.org/std/path/enum.Prefix.html) (i.e. begins with `\\?\`):
```rust
include!(concat!(env!("OUT_DIR"), "/src/repro.rs"));
```
This is because verbatim paths treat `/` literally, as if it were just another character in the file name.
The good news is that the standard library already has code to fix this. We can simply use `components` to normalize the path so it works as intended.
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
Dominator-order information is only needed for coverage graphs, and is easy
enough to collect by just traversing the graph again.
This avoids wasted work when computing graph dominators for any other purpose.
coverage: Make counter creation handle node/edge counters more uniformly
Similar to #130380, this is another round of small improvements informed by my ongoing attempts to overhaul coverage counter creation.
One of the big benefits is getting rid of the awkward special-case that would sometimes attach an edge counter to a node instead. That was needed by the code that chooses which out-edge should be given a counter expression, but we can avoid that by making the corresponding check a little smarter.
I've also renamed several things to be simpler and more consistent, which should help with future changes.
Always specify `llvm_abiname` for RISC-V targets
For RISC-V targets, when `llvm_abiname` is not specified LLVM will infer the ABI from the target features, causing #116344 to occur. This PR adds the correct `llvm_abiname` to all RISC-V targets where it is missing (which are all soft-float targets), and adds a test to prevent future RISC-V targets from accidentally omitting `llvm_abiname`. The only affect of this PR is that `-Ctarget-feature=+f` (or similar) will no longer affect the ABI on the modified targets.
<!-- homu-ignore:start -->
r? `@RalfJung`
<!--- homu-ignore:end -->
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)
Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Dont consider predicates that may hold as impossible in `is_impossible_associated_item`
Use infer vars to account for ambiguities when considering if methods are impossible to instantiate for a given self type. Also while we're at it, let's use the new trait solver instead of `evaluate` since this is used in rustdoc.
r? lcnr
Fixes#131839
stabilize Strict Provenance and Exposed Provenance APIs
Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;
impl<T: ?Sized> *const T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> *mut T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> NonNull<T> {
pub fn addr(self) -> NonZero<usize>;
pub fn with_addr(self, addr: NonZero<usize>) -> Self;
pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```
I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.
There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)
`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`
Part of https://github.com/rust-lang/rust/issues/95228.
[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
Finish stabilization of `result_ffi_guarantees`
The internal linting has been changed, so all that is left is making sure we stabilize what we want to stabilize.
Rollup of 4 pull requests
Successful merges:
- #126588 (Added more scenarios where comma to be removed in the function arg)
- #131728 (bootstrap: extract builder cargo to its own module)
- #131968 (Rip out old effects var handling code from traits)
- #131981 (Remove the `BoundConstness::NotConst` variant)
r? `@ghost`
`@rustbot` modify labels: rollup
Rip out old effects var handling code from traits
Traits no longer have an effect parameter, so this removes logic associated with it. It also removes logic surrounding confirming `~const Destruct` bounds, which I added a looooong time ago, and which I don't feel like we need anymore -- if it needs to be added back, it should be rewritten :D
cc `@fee1-dead`
Added more scenarios where comma to be removed in the function arg
This is an attempt to address the problem methion in https://github.com/rust-lang/rust/issues/106304#issuecomment-1837273666.
Copy the annotation to explain the fix
If the next Error::Extra ("next") doesn't next to current ("current")
```
fn foo(_: (), _: u32) {}
- foo("current", (), 1u32, "next")
+ foo((), 1u32)
```
If the previous error is not a `Error::Extra`, then do not trim the next comma
```
- foo((), "current", 42u32, "next")
+ foo((), 42u32)
```
Frankly, this is a fix from a test case and may not cover all scenarios
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Remove `lower_mono_bounds`
I'm not convinced about the usefulness of `lower_mono_bounds`, especially since we have *so* many lower-bound-like fns in HIR lowering, so I've just inlined it into its callers.