Remove unnecessary unsafe block around calls to discriminant_value
Since 63793 the discriminant_value intrinsic is safe to call. Remove
unnecessary unsafe block around calls to this intrinsic in built-in
derive macros.
Use llvm::computeLTOCacheKey to determine post-ThinLTO CGU reuse
During incremental ThinLTO compilation, we attempt to re-use the
optimized (post-ThinLTO) bitcode file for a module if it is 'safe' to do
so.
Up until now, 'safe' has meant that the set of modules that our current
modules imports from/exports to is unchanged from the previous
compilation session. See PR #67020 and PR #71131 for more details.
However, this turns out be insufficient to guarantee that it's safe
to reuse the post-LTO module (i.e. that optimizing the pre-LTO module
would produce the same result). When LLVM optimizes a module during
ThinLTO, it may look at other information from the 'module index', such
as whether a (non-imported!) global variable is used. If this
information changes between compilation runs, we may end up re-using an
optimized module that (for example) had dead-code elimination run on a
function that is now used by another module.
Fortunately, LLVM implements its own ThinLTO module cache, which is used
when ThinLTO is performed by a linker plugin (e.g. when clang is used to
compile a C proect). Using this cache directly would require extensive
refactoring of our code - but fortunately for us, LLVM provides a
function that does exactly what we need.
The function `llvm::computeLTOCacheKey` is used to compute a SHA-1 hash
from all data that might influence the result of ThinLTO on a module.
In addition to the module imports/exports that we manually track, it
also hashes information about global variables (e.g. their liveness)
which might be used during optimization. By using this function, we
shouldn't have to worry about new LLVM passes breaking our module re-use
behavior.
In LLVM, the output of this function forms part of the filename used to
store the post-ThinLTO module. To keep our current filename structure
intact, this PR just writes out the mapping 'CGU name -> Hash' to a
file. To determine if a post-LTO module should be reused, we compare
hashes from the previous session.
This should unblock PR #75199 - by sheer chance, it seems to have hit
this issue due to the particular CGU partitioning and optimization
decisions that end up getting made.
Recognize discriminant reads as no-ops in RemoveNoopLandingPads
The cleanup blocks often contain read of discriminants. Teach
RemoveNoopLandingPads to recognize them as no-ops to remove
additional no-op landing pads.
Fixes#74616
Makes progress towards #43081
Unblocks PR #76130
When pretty-printing an AST node, we may insert additional parenthesis
to ensure that precedence is properly preserved in code we output.
However, the proc macro implementation relies on comparing a
pretty-printed AST node to the captured `TokenStream`. Inserting extra
parenthesis changes the structure of the reparsed `TokenStream`, making
the comparison fail.
This PR refactors the AST pretty-printing code to allow skipping the
insertion of additional parenthesis. Several freestanding methods are
moved to trait methods on `PrintState`, which keep track of an internal
`insert_extra_parens` flag. This flag is normally `true`, but we expose
a public method which allows pretty-printing a nonterminal with
`insert_extra_parens = false`.
To avoid changing the public interface of `rustc_ast_pretty`, the
freestanding `_to_string` methods are changed to delegate to a
newly-crated `State`. The main pretty-printing code is moved to a new
`state` module to ensure that it does not accidentally call any of these
public helper functions (instead, the internal functions with the same
name should be used).
Depending on if upvar_tys inferred or not, we were returning either an
inference variable which later resolves to a tuple or else the upvar tys
themselves
Co-authored-by: Roxane Fruytier <roxane.fruytier@hotmail.com>
This commit allows us to decide the number of captures required after
completing capture ananysis, which is required as part of implementing
RFC-2229.
Co-authored-by: Aman Arora <me@aman-arora.com>
Co-authored-by: Jenny Wills <wills.jenniferg@gmail.com>
Add -Z codegen-backend dylib to deps
When the codegen-backend dylib changes, the program should be rebuilt.
---
Unfortunately I was unable to test this works locally due to running into a TLS issue when running the custom backend, `thread 'rustc' panicked at 'no ImplicitCtxt stored in tls', compiler/rustc_middle/src/ty/context.rs:1750:54`, which seems similar to https://github.com/rust-lang/rust/issues/62717 but has a completely different cause and backtrace.
`@eddyb` said to ping `@Mark-Simulacrum` about what they think about this, so, ping!
This is a solution to the file length being over 3000, something Clippy has a problem with.
The other solution to the file length is
1. to change the API of this struct by
2. encapulating certain fields of the struct into other structs.
Since 63793 the discriminant_value intrinsic is safe to call. Remove
unnecessary unsafe block around calls to this intrinsic in built-in
derive macros.
Provide structured suggestions when finding structs when expecting a trait
When finding an ADT in a trait object definition provide some solutions. Fix#45817.
Given `<Param as Trait>::Assoc: Ty` suggest `Param: Trait<Assoc = Ty>`. Fix#75829.
Allow generic parameters in intra-doc links
Fixes#62834.
---
The contents of the generics will be mostly ignored (except for warning
if fully-qualified syntax is used, which is currently unsupported in
intra-doc links - see issue #74563).
* Allow links like `Vec<T>`, `Result<T, E>`, and `Option<Box<T>>`
* Allow links like `Vec::<T>::new()`
* Warn on
* Unbalanced angle brackets (e.g. `Vec<T` or `Vec<T>>`)
* Missing type to apply generics to (`<T>` or `<Box<T>>`)
* Use of fully-qualified syntax (`<Vec as IntoIterator>::into_iter`)
* Invalid path separator (`Vec:<T>:new`)
* Too many angle brackets (`Vec<<T>>`)
* Empty angle brackets (`Vec<>`)
Note that this implementation *does* allow some constructs that aren't
valid in the actual Rust syntax, for example `Box::<T>new()`. That may
not be supported in rustdoc in the future; it is an implementation
detail.
They were not formatted correctly, so rustdoc was interpreting some
parts as code. Also cleaned up some other query docs that weren't
causing issues, but were formatted incorrectly.
Add TraitDef::find_map_relevant_impl
This PR adds a method to `TraitDef`. While `for_each_relevant_impl` covers the general use case, sometimes it's not necessary to scan through all the relevant implementations, so this PR introduces a new method, `find_map_relevant_impl`. I've also replaced the `for_each_relevant_impl` calls where possible.
I'm hoping for a tiny bit of efficiency gain here and there.
Cleanup of `eat_while()` in lexer
The size of a lexer Token was inflated by the largest `TokenKind` variants `LiteralKind::RawStr` and `RawByteStr`, because
* it used `usize` although `u32` is sufficient in rustc, since crates must be smaller than 4GB,
* and it stored the 20 bytes big `RawStrError` enum for error reporting.
If a raw string is invalid, it now needs to be reparsed to get the `RawStrError` data, but that is a very cold code path.
Technically this breaks other tools that depend on rustc_lexer because they are now also restricted to a max file size of 4GB. But this shouldn't matter in practice, and rustc_lexer isn't stable anyway.
Can I also get a perf run?
Edit: This makes no difference in performance. The PR now only contains a small cleanup.
Add asm! support for mips64
- [x] Updated `src/doc/unstable-book/src/library-features/asm.md`.
- [ ] No vector type support. I don't know much about those types.
cc #76839
rustc_target: Refactor away `TargetResult`
Follow-up to https://github.com/rust-lang/rust/pull/77202.
Construction of a built-in target is always infallible now, so `TargetResult` is no longer necessary.
The second commit contains some further cleanup based on built-in target construction being infallible.
The cleanup blocks often contain read of discriminants. Teach
RemoveNoopLandingPads to recognize them as no-ops to remove
additional no-op landing pads.