Rollup of 10 pull requests
Successful merges:
- #118665 (Consolidate all associated items on the NonZero integer types into a single impl block per type)
- #118798 (Use AtomicU8 instead of AtomicUsize in backtrace.rs)
- #119062 (Deny braced macro invocations in let-else)
- #119138 (Docs: Use non-SeqCst in module example of atomics)
- #119907 (Update `fn()` trait implementation docs)
- #120083 (Warn when not having a profiler runtime means that coverage tests won't be run/blessed)
- #120107 (dead_code treats #[repr(transparent)] the same as #[repr(C)])
- #120110 (Update documentation for Vec::into_boxed_slice to be more clear about excess capacity)
- #120113 (Remove myself from review rotation)
- #120118 (Fix typo in documentation in base.rs)
r? `@ghost`
`@rustbot` modify labels: rollup
Expand lint tables && make clippy happy 🎉
This PR expands the lint tables on `./Cargo.toml` and thereby makes `cargo clippy` exit successfully! 🎉Fixes#15918
## How?
In the beginning there are some warnings for rustc.
Next, and most importantly, there is the clippy lint table. There are a few sections in there.
First there are the lint groups.
Second there are all lints which are permanently allowed with the reasoning why they are allowed.
Third there is a huge list of temporarily allowed lints. They should be removed in the mid-term, but incur a substantial amount of work, therefore they are allowed for now and can be worked on bit by bit.
Fourth there are all lints which should warn.
Additionally there are a few allow statements in the code for lints which should be permanently allowed in this specific place, but not in the whole code base.
## Follow up work
- [ ] Run clippy in CI
- [ ] Remove tidy test (at least `@Veykril` wrote this in #15017)
- [ ] Work on temporarily allowed lints
Pass each obligation to an fn callback with its respective inference context. This avoids needing to keep around copies of obligations or inference contexts.
Specify usability of inspect_typeck in comment.
internal: Record FnAbi
This unfortunately breaks our lub coercions, so will need to look into fixing that first, though I am not sure what is going wrong where...
Stubbed some stuff out for the time being.
The internal function was unsound, it could cause UB in rare cases where
the user inadvertly stored the returned object in a location that could
outlive the TyCtxt.
In order to make it safe, we now take a type context as an argument to
the internal fn, and we ensure that interned items are lifted using the
provided context.
Thus, this change ensures that the compiler can properly enforce
that the object does not outlive the type context it was lifted to.
With https://reviews.llvm.org/D86310 LLVM now has i128 aligned to
16-bytes on x86 based platforms. This will be in LLVM-18. This patch
updates all our spec targets to be 16-byte aligned, and removes the
alignment when speaking to older LLVM.
This results in Rust overaligning things relative to LLVM on older LLVMs.
This alignment change was discussed in rust-lang/compiler-team#683
See #54341 for additional information about why this is happening and
where this will be useful in the future.
This *does not* stabilize `i128`/`u128` for FFI.
`cargo clippy --fix`
This PR is the result of running `cargo clippy --fix && cargo fmt` in the root of the repository. I did not manually review all the changes, but just skimmed through a few of them. The tests still pass, so it seems fine.
A-diagnostics is already labeled correctly thanks to the template and there usually isn't much to do on those issues, so it's fine to just add them to the pile.
Update documentation for Vec::into_boxed_slice to be more clear about excess capacity
Currently, the documentation for Vec::into_boxed_slice says that "if the vector has excess capacity, its items will be moved into a newly-allocated buffer with exactly the right capacity." This is misleading, as copies do not necessarily occur, depending on if the allocator supports in-place shrinking. I copied some of the wording from shrink_to_fit, though it could potentially still be worded better than this.
dead_code treats #[repr(transparent)] the same as #[repr(C)]
In #92972 we enabled linting on unused fields in tuple structs. In #118297 that lint was enabled by default. That exposed issues like #119659, where the fields of a struct marked `#[repr(transparent)]` were reported by the `dead_code` lint. The language team [decided](https://github.com/rust-lang/rust/issues/119659#issuecomment-1885172045) that the lint should treat `repr(transparent)` the same as `#[repr(C)]`.
Fixes#119659
Warn when not having a profiler runtime means that coverage tests won't be run/blessed
On a few occasions (e.g. #118036, #119984) people have been tripped up by the fact that half of the coverage test suite is skipped by default, because it `// needs-profiler-support` and the profiler runtime is not actually built in any of the default config profiles.
(This is made worse by the fact that it isn't enabled in any of the PR CI jobs either. So people think that they've successfully blessed the test suite, and then get a rude surprise when their merge only fails in the full CI job suite.)
This PR adds a simple warning to compiletest that should alert the user in some cases. It's not foolproof, but it should increase the chances of catching this problem earlier in the PR process.
Update `fn()` trait implementation docs
Fixes#119903
This was FCP'd and approved for the 1.70.0 release, this is just a docs update to match that change.
Docs: Use non-SeqCst in module example of atomics
I done this for this reasons:
1. The example now shows that there is more Orderings than just SeqCst.
2. People who would copy from example would now have more suitable orderings for the job.
3. SeqCst is both much harder to reason about and not needed in most situations.
IMHO, we should encourage people to think and use memory orderings that is suitable to task instead of blindly defaulting to SeqCst.
r? `@m-ou-se`