Normalize consts in writeback when GCE is enabled
GCE lazily normalizes its unevaluated consts. This PR ensures that, like the new solver with its lazy norm types, we can assume that the writeback results are fully normalized.
This is important since we're trying to eliminate unnecessary calls to `ty::Const::{eval,normalize}` since they won't work with mGCE. Previously, we'd keep those consts unnormalized in writeback all the way through MIR build, and they'd only get normalized if we explicitly called `ty::Const::{eval,normalize}`, or during codegen since that calls `normalize_erasing_regions` (which invokes the `QueryNormalizer`, which evaluates the const accordingly).
This hack can (hopefully obviously) be removed when mGCE is implemented and we yeet the old GCE; it's only reachable with the GCE flag anyways, so I'm not worried about the implications here.
r? `@BoxyUwU`
Add recursion limit to FFI safety lint
Fixes#130310
Now we check against `tcx.recursion_limit()` and raise an error if it the limit is reached instead of overflowing the stack.
bail if there are too many non-region infer vars in the query response
A minimal fix for the hang in nalgebra. If the query response would result in too many distinct non-region inference variables, simply overwrite the result with overflow. This should either happen if the result already has too many distinct type inference variables, or if evaluating the query encountered a lot of ambiguous associated types. In both cases it's straightforward to wait until the aliases are no longer ambiguous and then try again.
r? `@compiler-errors`
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).
This PR makes the following example compile:
```rust
#![feature(pin_ergonomics)]
fn foo(_: Pin<&mut Foo>) {
}
fn bar(mut x: Pin<&mut Foo>) {
foo(x);
foo(x);
}
```
Previously, you would have had to write `bar` as:
```rust
fn bar(mut x: Pin<&mut Foo>) {
foo(x.as_mut());
foo(x);
}
```
Tracking:
- #130494
r? `@compiler-errors`
Fix feature name in test
This is meant to test that the `box_patterns` feature isn't active due to the `cfg(FALSE)`, but uses the removed `box_syntax` feature. Fix this so it's testing what it should be.
Get rid of niche selection's dependence on fields's order
Fixes#125630.
Use the optimal niche selection decided in `univariant()` rather than picking niche field manually.
r? `@the8472`
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
Never patterns constitute a read for unsafety
This code is otherwise unsound if we don't emit an unsafety error here. Noticed when fixing #130528, but it's totally unrelated.
r? `@Nadrieril`
Check params for unsafety in THIR
Self-explanatory. I'm not surprised this was overlooked, given the way that THIR visitors work. Perhaps we should provide a better entrypoint.
Fixes#130528
Further improve diagnostics for expressions in pattern position
Follow-up of #118625, see #121697.
```rs
fn main() {
match 'b' {
y.0.0.1.z().f()? as u32 => {},
}
}
```
Before:
```
error: expected one of `=>`, ``@`,` `if`, or `|`, found `.`
--> src/main.rs:3:10
|
3 | y.0.0.1.z().f()? as u32 => {},
| ^ expected one of `=>`, ``@`,` `if`, or `|`
```
After:
```
error: expected a pattern, found an expression
--> src/main.rs:3:9
|
3 | y.0.0.1.z().f()? as u32 => {},
| ^^^^^^^^^^^^^^^^^^^^^^^ arbitrary expressions are not allowed in patterns
|
help: consider moving the expression to a match arm guard
|
3 | val if val == y.0.0.1.z().f()? as u32 => {},
| ~~~ +++++++++++++++++++++++++++++++++
help: consider extracting the expression into a `const`
|
2 + const VAL: /* Type */ = y.0.0.1.z().f()? as u32;
3 ~ match 'b' {
4 ~ VAL => {},
|
help: consider wrapping the expression in an inline `const` (requires `#![feature(inline_const_pat)]`)
|
3 | const { y.0.0.1.z().f()? as u32 } => {},
| +++++++ +
```
---
r? fmease
`@rustbot` label +A-diagnostics +A-parser +A-patterns +C-enhancement
Update the minimum external LLVM to 18
With this change, we'll have stable support for LLVM 18 and 19.
For reference, the previous increase to LLVM 17 was #122649.
cc `@rust-lang/wg-llvm`
r? nikic
Gate `repr(Rust)` correctly on non-ADT items
#114201 added `repr(Rust)` but didn't add any attribute validation to it like `repr(C)` has, to only allow it on ADT items.
I consider this code to be nonsense, for example:
```
#[repr(Rust)]
fn foo() {}
```
Reminder that it's different from `extern "Rust"`, which *is* valid on function items. But also this now disallows `repr(Rust)` on modules, impls, traits, etc.
I'll crater it, if it looks bad then I'll add an FCW.
---
https://github.com/rust-lang/rust/labels/relnotes: Compatibility (minor breaking change).
Do not ICE with incorrect empty suggestion
When we have two types with the same name, one without type parameters and the other with type parameters and a derive macro, we were before incorrectly suggesting to remove type parameters from the former, which ICEd because we were suggesting to remove nothing. We now gate against this.
The output is still not perfect. E0107 should explicitly detect this case and provide better context, but for now let's avoid the ICE.
Fix#108748.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
When we have two types with the same name, one without type parameters and the other with type parameters and a derive macro, we were before incorrectly suggesting to remove type parameters from the former, which ICEd because we were suggesting to remove nothing. We now gate against this.
The output is still not perfect. E0107 should explicitly detect this case and provide better context, but for now let's avoid the ICE.
Improve handling of raw-idents in check-cfg
This PR improves the handling of raw-idents in the check-cfg diagnostics.
In particular the list of expected names and the suggestion now correctly take into account the "keyword-ness" of the ident, and correctly prefix the ident with `r#` when necessary.
`@rustbot` labels +F-check-cfg
Fix circular fn_sig queries to correct number of args for methods
Fixes#130400. This was a [debug assert](28e8f01c2a/compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs (L2557)) added to some argument error reporting code in #129320 which verified that the number of params (from the HIR) matched the `matched_inputs` which ultimately come from ty::FnSig. In the reduced test case:
```
fn foo(&mut self) -> _ {
foo()
}
```
There is a circular dependency computing the ty::FnSig -- when trying to compute it, we try to figure out the return value, which again depends on this ty::FnSig. In #105162, this was supported by short-circuiting the cycle by synthesizing a FnSig with error types for parameters. The [code in question](https://github.com/rust-lang/rust/pull/105162/files#diff-a65feec6bfffb19fbdc60a80becd1030c82a56c16b177182cd277478fdb04592R44) computes the number of parameters by taking the number of parameters from the hir::FnDecl and adding 1 if there is an implicit self parameter.
I might be missing a subtlety here, but AFAICT the adjustment for implicit self args is unnecessary and results in one too many args. For example, for this non-errorful code:
```
trait Foo {
fn bar(&self) {}
}
```
The resulting hir::FnDecl and ty::FnSig both have the same number of inputs -- 1. So, this PR removes that adjustment and adds a test for the debug ICE.
r? `@compiler-errors`
Implement a Method to Seal `DiagInner`'s Suggestions
This PR adds a method on `DiagInner` called `.seal_suggestions()` to prevent new suggestions from being added while preserving existing suggestions.
This is useful because currently there is no way to prevent new suggestions from being added to a diagnostic. `.disable_suggestions()` is the closest but it gets rid of all suggestions before and after the call.
Therefore, `.seal_suggestions()` can be used when, for example, misspelled keyword is detected and reported. In such cases, we may want to prevent other suggestions from being added to the diagnostic, as they would likely be meaningless once the misspelled keyword is identified. For context: https://github.com/rust-lang/rust/pull/129899#discussion_r1741307132
To store an additional state, the type of the `suggestions` field in `DiagInner` was changed into a three variant enum. While this change affects files across different crates, care was taken to preserve the existing code's semantics. This is validated by the fact that all UI tests pass without any modifications.
r? chenyukang
Remove redundant test typeid equality by subtyping
This known-bug label was a left over on #118247
r? `@jackh726`
This doesn't address #110395, I didn't investigate about it yet.
In 2021 pat was changed to recognize `|` at the top level, with
pat_param added to retain the old behavior. This means
pat is subject to the same cross-edition behavior as expr will be in
2024.
Co-authored-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
There's a subtle interaction between macros with metavar expressions and the
edition-dependent fragment matching behavior. This test illustrates the current
behavior when using macro-generating-macros across crate boundaries with
different editions.
Co-Authored-By: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Co-Authored-By: Eric Holk <eric@theincredibleholk.org>
Don't call `extern_crate` when local crate name is the same as a dependency and we have a trait error
#124944 implemented logic to point out when a trait bound failure involves a *trait* and *type* who come from identically named but different crates. This logic calls the `extern_crate` query which is not valid on `LOCAL_CRATE` cnum, so let's filter that out eagerly.
Fixes#130272Fixes#129184
Encode `coroutine_by_move_body_def_id` in crate metadata
We synthesize the MIR for a by-move body for the `FnOnce` implementation of async closures. It can be accessed with the `coroutine_by_move_body_def_id` query. We weren't encoding this query in the metadata though, nor were we properly recording that synthetic MIR in `mir_keys`, so the `optimized_mir` wasn't getting encoded either!
Stacked on top is a fix to consider `DefKind::SyntheticCoroutineBody` to return true in several places I missed. Specifically, we should consider the def-kind in `fn DefKind::is_fn_like()`, since that's what we were using to make sure we ensure `query mir_inliner_callees` before the MIR gets stolen for the body. This led to some CI failures that were caught by miri but which I added a test for.