This is shorter, avoids potential conflicts with a crate
named `implementors`[^1], and will be less confusing when JS
include files are added for type aliases.
[^1]: AFAIK, this couldn't actually cause any problems right now,
but it's simpler just to make it impossible than relying on never
having a file named `trait.Foo.js` in the crate data area.
rustdoc-search: add impl disambiguator to duplicate assoc items
Preview (to see the difference, click the link and pay attention to the specific function that comes up):
| Before | After |
|--|--|
| [`simd<i64>, simd<i64> -> simd<i64>`](https://doc.rust-lang.org/nightly/std/?search=simd%3Ci64%3E%2C%20simd%3Ci64%3E%20-%3E%20simd%3Ci64%3E) | [`simd<i64>, simd<i64> -> simd<i64>`](https://notriddle.com/rustdoc-demo-html-3/impl-disambiguate-search/std/index.html?search=simd%3Ci64%3E%2C%20simd%3Ci64%3E%20-%3E%20simd%3Ci64%3E) |
| [`cow, vec -> bool`](https://doc.rust-lang.org/nightly/std/?search=cow%2C%20vec%20-%3E%20bool) | [`cow, vec -> bool`](https://notriddle.com/rustdoc-demo-html-3/impl-disambiguate-search/std/index.html?search=cow%2C%20vec%20-%3E%20bool)
Helps with #90929
This changes the search results, specifically, when there's more than one impl with an associated item with the same name. For example, the search queries `simd<i8> -> simd<i8>` and `simd<i64> -> simd<i64>` don't link to the same function, but most of the functions have the same names.
This change should probably be FCP-ed, especially since it adds a new anchor link format for `main.js` to handle, so that URLs like `struct.Vec.html#impl-AsMut<[T]>-for-Vec<T,+A>/method.as_mut` redirect to `struct.Vec.html#method.as_mut-2`. It's a strange design, but there are a few reasons for it:
* I'd like to avoid making the HTML bigger. Obviously, fixing this bug is going to add at least a little more data to the search index, but adding more HTML penalises viewers for the benefit of searchers.
* Breaking `struct.Vec.html#method.len` would also be a disappointment.
On the other hand:
* The path-style anchors might be less prone to link rot than the numbered anchors. It's definitely less likely to have URLs that appear to "work", but silently point at the wrong thing.
* This commit arranges the path-style anchor to redirect to the numbered anchor. Nothing stops rustdoc from doing the opposite, making path-style anchors the default and redirecting the "legacy" numbered ones.
### The bug
On the "Before" links, this example search calls for `i64`:
![image](https://github.com/rust-lang/rust/assets/1593513/9431d89d-41dc-4f68-bbb1-3e2704a973d2)
But if I click any of the results, I get `f64` instead.
![image](https://github.com/rust-lang/rust/assets/1593513/6d89c692-1847-421a-84d9-22e359d9cf82)
The PR fixes this problem by adding enough information to the search result `href` to disambiguate methods with different types but the same name.
More detailed description of the problem at:
https://github.com/rust-lang/rust/pull/109422#issuecomment-1491089293
> When a struct/enum/union has multiple impls with different type parameters, it can have multiple methods that have the same name, but which are on different impls. Besides Simd, [Any](https://doc.rust-lang.org/nightly/std/any/trait.Any.html?search=any%3A%3Adowncast) also demonstrates this pattern. It has three methods named `downcast`, on three different impls.
>
> When that happens, it presents a challenge in linking to the method. Normally we link like `#method.foo`. When there are multiple `foo`, we number them like `#method.foo`, `#method.foo-1`, `#method.foo-2`, etc.
>
> It also presents a challenge for our search code. Currently we store all the variants in the index, but don’t have any way to generate unambiguous URLs in the results page, or to distinguish them in the SERP.
>
> To fix this, we need three things:
>
> 1. A fragment format that fully specifies the impl type parameters when needed to disambiguate (`#impl-SimdOrd-for-Simd<i64,+LANES>/method.simd_max`)
> 2. A search index that stores methods with enough information to disambiguate the impl they were on.
> 3. A search results interface that can display multiple methods on the same type with the same name, when appropriate OR a disambiguation landing section on item pages?
>
> For reviewers: it can be hard to see the new fragment format in action since it immediately gets rewritten to the numbered form.
This commit makes three changes for consistency and readability:
- It shows the sibling navigation on module pages. It's weird
that it didn't work before, and is inconsistent with everything
else (even Crates have sibling navigation with other Crates).
- It hides the "In [parent]" header if it's the same as the
current crate, and if there's no other header between them.
We need to keep it on modules and types, since they have
their own header and data between them, and we don't want
to show siblings under a header implying that they're children.
- It adds a margin to deal with the headers butting directly into
the branding lockup.
This commit changes the layout to something a bit less "look at my logo!!!111"
gigantic, and makes it clearer where clicking the logo will actually take you.
It also means the crate name is persistently at the top of the sidebar, even
when in a sub-item page, and clicking that name takes you back to the root.
| | Short crate name | Long crate name |
|---------|------------------|-----------------|
| Root | ![short-root] | ![long-root]
| Subpage | ![short-subpage] | ![long-subpage]
[short-root]: https://github.com/rust-lang/rust/assets/1593513/fe2ce102-d4b8-44e6-9f7b-68636a907f56
[short-subpage]: https://github.com/rust-lang/rust/assets/1593513/29501663-56c0-4151-b7de-d2637e167125
[long-root]: https://github.com/rust-lang/rust/assets/1593513/f6a385c0-b4c5-4a9c-954b-21b38de4192f
[long-subpage]: https://github.com/rust-lang/rust/assets/1593513/97ec47b4-61bf-4ebe-b461-0d2187b8c6cahttps://notriddle.com/rustdoc-html-demo-4/logo-lockup/image/index.htmlhttps://notriddle.com/rustdoc-html-demo-4/logo-lockup/crossbeam_channel/index.htmlhttps://notriddle.com/rustdoc-html-demo-4/logo-lockup/adler/struct.Adler32.htmlhttps://notriddle.com/rustdoc-html-demo-4/logo-lockup/crossbeam_channel/struct.Sender.html
This improves visual information density (the construct with the logo and
crate name is *shorter* than the logo on its own, because it's not
square) and navigation clarity (we can now see what clicking the Rust logo
does, specifically).
Compare this with the layout at [Phoenix's Hexdocs] (which is what this
proposal is closely based on), the old proposal on [Internals Discourse]
(which always says "Rust standard library" in the sidebar, but doesn't do the
side-by-side layout).
[Phoenix's Hexdocs]: https://hexdocs.pm/phoenix/1.7.7/overview.html
[Internals Discourse]: https://internals.rust-lang.org/t/poc-of-a-new-design-for-the-generated-rustdoc/11018
In newer versions of rustdoc, the crate name and version are always shown in
the sidebar, even in subpages. Clicking the crate name does the same thing
clicking the logo always did: return you to the crate root.
While this actually takes up less screen real estate than the old layout on
desktop, it takes up more HTML. It's also a bit more visually complex.
I could do what the Internals POC did and keep the vertically stacked layout
all the time, instead of doing a horizontal stack where possible. It would
take up more screen real estate, though.
This design is lifted almost verbatim from Hexdocs. It seems to work for them.
[`opentelemetry_process_propagator`], for example, has a long application name.
[`opentelemetry_process_propagator`]: https://hexdocs.pm/opentelemetry_process_propagator/OpentelemetryProcessPropagator.html
Has anyone written the rationale on why the Rust logo shows up on projects that
aren't the standard library? If we turned it off on non-standard crates by
default, it would line wrap crate names a lot less often.
Or maybe we should encourage crate authors to include their own logo more
often? It certainly helps give people a better sense of "place."
I'm not sure of anything that directly follows up this one. Plenty of other
changes could be made to improve the layout, like
* coming up with a less cluttered way to do disclosure (there's a lot of `[-]`
on the page)
* doing a better job of separating lateral navigation (vec::Vec links to
vec::IntoIter) and the table of contents (vec::Vec links to vec::Vec::new)
* giving readers more control of how much rustdoc hows them, and giving doc
authors more control of how much it generates
* better search that reduces the need to browse
But those are mostly orthogonal, not future possibilities unlocked by this change.
Helps with #90929
This changes the search results, specifically, when there's more than
one impl with an associated item with the same name. For example,
the search queries `simd<i8> -> simd<i8>` and `simd<i64> -> simd<i64>`
don't link to the same function, but most of the functions have the
same names.
This change should probably be FCP-ed, especially since it adds a new
anchor link format for `main.js` to handle, so that URLs like
`struct.Vec.html#impl-AsMut<[T]>-for-Vec<T,+A>/method.as_mut` redirect
to `struct.Vec.html#method.as_mut-2`. It's a strange design, but there
are a few reasons for it:
* I'd like to avoid making the HTML bigger. Obviously, fixing this bug
is going to add at least a little more data to the search index, but
adding more HTML penalises viewers for the benefit of searchers.
* Breaking `struct.Vec.html#method.len` would also be a disappointment.
On the other hand:
* The path-style anchors might be less prone to link rot than the numbered
anchors. It's definitely less likely to have URLs that appear to "work",
but silently point at the wrong thing.
* This commit arranges the path-style anchor to redirect to the numbered
anchor. Nothing stops rustdoc from doing the opposite, making path-style
anchors the default and redirecting the "legacy" numbered ones.
rustdoc-search: add support for type parameters
r? `@GuillaumeGomez`
## Preview
* https://notriddle.com/rustdoc-html-demo-4/advanced-search/rustdoc/read-documentation/search.html
* https://notriddle.com/rustdoc-html-demo-4/advanced-search/std/index.html?search=option%3Coption%3CT%3E%3E%20-%3E%20option%3CT%3E
* https://notriddle.com/rustdoc-html-demo-4/advanced-search/std/index.html?search=option%3CT%3E,%20E%20-%3E%20result%3CT,%20E%3E
* https://notriddle.com/rustdoc-html-demo-4/advanced-search/std/index.html?search=-%3E%20option%3CT%3E
## Description
When writing a type-driven search query in rustdoc, specifically one with more than one query element, non-existent types become generic parameters instead of auto-correcting (which is currently only done for single-element queries) or giving no result. You can also force a generic type parameter by writing `generic:T` (and can force it to not use a generic type parameter with something like `struct:T` or whatever, though if this happens it means the thing you're looking for doesn't exist and will give you no results).
There is no syntax provided for specifying type constraints for generic type parameters.
When you have a generic type parameter in a search query, it will only match up with generic type parameters in the actual function, not concrete types that match, not concrete types that implement a trait. It also strictly matches based on when they're the same or different, so `option<T>, option<U> -> option<U>` matches `Option::and`, but not `Option::or`. Similarly, `option<T>, option<T> -> option<T>` matches `Option::or`, but not `Option::and`.
## Motivation
This feature is motivated by the many "combinitor"-type functions found in generic libraries, such as Option, Future, Iterator, and Entry. These highly-generic functions have names that are almost completely arbitrary, and a type signature that tells you what it actually does.
This PR is a major step towards[^closure] being able to easily search for generic functions by their type signature instead of by name. Some examples of combinators that can be found using this PR (try them out in the preview):
* `option<option<T>> -> option<T>` returns Option::flatten
* `option<T> -> result<T>` returns Option::ok_or
* `option<result<T>> -> result<option<T>>` returns Option::transpose
* `entry<K, V>, FnOnce -> V` returns `Entry::or_insert_with` (and `or_insert_with_key`, since there's no way to specify the generics on FnOnce)
[^closure]:
For this feature to be as useful as it ought to be, you should be able to search for *trait-associated types* and *closures*. This PR does not implement either of these: they are **Future possibilities**.
Trait-associated types would allow queries like `option<T> -> iterator<item=T>` to return `Option::iter`. We should also allow `option<T> -> iterator<T>` to match the associated type version.
Closures would make a good way to query for things like `Option::map`. Closure support needs associated types to be represented in the search index, since `FnOnce() -> i32` desugars to `FnOnce<Output=i32, ()>`, so associated trait types should be implemented first. Also, we'd want to expose an easy way to query closures without specifying which of the three traits you want.
When writing a type-driven search query in rustdoc, specifically one
with more than one query element, non-existent types become generic
parameters instead of auto-correcting (which is currently only done
for single-element queries) or giving no result. You can also force a
generic type parameter by writing `generic:T` (and can force it to not
use a generic type parameter with something like `struct:T` or whatever,
though if this happens it means the thing you're looking for doesn't
exist and will give you no results).
There is no syntax provided for specifying type constraints
for generic type parameters.
When you have a generic type parameter in a search query, it will only
match up with generic type parameters in the actual function, not
concrete types that match, not concrete types that implement a trait.
It also strictly matches based on when they're the same or different,
so `option<T>, option<U> -> option<U>` matches `Option::and`, but not
`Option::or`. Similarly, `option<T>, option<T> -> option<T>`` matches
`Option::or`, but not `Option::and`.
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^