Account for non-overlapping unmet trait bounds in suggestion
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Follow up to #120396, only last commit is relevant.
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
When encountering a type mismatch error involving `dyn Trait`, mention
the existence of boxed trait objects if the other type involved
implements `Trait`.
Partially addresses #102629.
In `report_fullfillment_errors` push back `T: Sized`, `T: WellFormed`
and coercion errors to the end of the list. The pre-existing
deduplication logic eliminates redundant errors better that way, keeping
the resulting output with fewer errors than before, while also having
more detail.
This option guards the logic of writing long type names in files and
instead using short forms in error messages in rustc_middle/ty/error
behind a flag. The main motivation for this change is to disable this
behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a
long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their
file is.
Some ui tests actually rely on this behaviour for their assertions,
so for those we enable the flag manually.
Consider `tests/ui/const-generics/generic_const_exprs/issue-102768.stderr`,
the error message where it gives additional notes about where the associated
type is defined, and how the dead code lint doesn't have an article,
like in `tests/ui/lint/dead-code/issue-85255.stderr`. They don't have
articles, so it seems unnecessary to have one here.
Most tests involving save-analysis were removed, but I kept a few where
the `-Zsave-analysis` was an add-on to the main thing being tested,
rather than the main thing being tested.
For `x.py install`, the `rust-analysis` target has been removed.
For `x.py dist`, the `rust-analysis` target has been kept in a
degenerate form: it just produces a single file `reduced.json`
indicating that save-analysis has been removed. This is necessary for
rustup to keep working.
Closes#43606.
This means that
```rust
impl Foo {
#[doc(alias = "quux")]
fn bar(&self) {}
}
fn main() {
(Foo {}).quux();
}
```
will suggest `bar`. This currently uses the "there is a method with a
similar name" help text, because the point where we choose and emit a
suggestion is different from where we gather the suggestions. Changes
have mainly been made to the latter.
The selection code will now fall back to aliased candidates, but
generally only if there is no candidate that matches based on the
existing Levenshtein methodology.
Fixes#83968.