Tweak suggestions when using incorrect type of enum literal
More accurate suggestions when writing wrong style of enum variant literal:
```
error[E0533]: expected value, found struct variant `E::Empty3`
--> $DIR/empty-struct-braces-expr.rs:18:14
|
LL | let e3 = E::Empty3;
| ^^^^^^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | let e3 = E::Empty3 {};
| ++
```
```
error[E0533]: expected value, found struct variant `E::V`
--> $DIR/struct-literal-variant-in-if.rs:10:13
|
LL | if x == E::V { field } {}
| ^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | if x == (E::V { field }) {}
| + +
```
```
error[E0618]: expected function, found enum variant `Enum::Unit`
--> $DIR/suggestion-highlights.rs:15:5
|
LL | Unit,
| ---- enum variant `Enum::Unit` defined here
...
LL | Enum::Unit();
| ^^^^^^^^^^--
| |
| call expression requires function
|
help: `Enum::Unit` is a unit enum variant, and does not take parentheses to be constructed
|
LL - Enum::Unit();
LL + Enum::Unit;
|
```
```
error[E0599]: no variant or associated item named `tuple` found for enum `Enum` in the current scope
--> $DIR/suggestion-highlights.rs:36:11
|
LL | enum Enum {
| --------- variant or associated item `tuple` not found for this enum
...
LL | Enum::tuple;
| ^^^^^ variant or associated item not found in `Enum`
|
help: there is a variant with a similar name
|
LL | Enum::Tuple(/* i32 */);
| ~~~~~~~~~~~~~~~~;
|
```
Tweak "field not found" suggestion when giving struct literal for tuple struct type:
```
error[E0560]: struct `S` has no field named `x`
--> $DIR/nested-non-tuple-tuple-struct.rs:8:19
|
LL | pub struct S(f32, f32);
| - `S` defined here
...
LL | let _x = (S { x: 1.0, y: 2.0 }, S { x: 3.0, y: 4.0 });
| ^ field does not exist
|
help: `S` is a tuple struct, use the appropriate syntax
|
LL | let _x = (S(/* f32 */, /* f32 */), S { x: 3.0, y: 4.0 });
| ~~~~~~~~~~~~~~~~~~~~~~~
Use a multipart suggestion instead of a single whole-span replacement:
```
error[E0796]: creating a shared reference to a mutable static
--> $DIR/reference-to-mut-static-unsafe-fn.rs:10:18
|
LL | let _y = &X;
| ^^ shared reference to mutable static
|
= note: this shared reference has lifetime `'static`, but if the static ever gets mutated, or a mutable reference is created, then any further use of this shared reference is Undefined Behavior
help: use `addr_of!` instead to create a raw pointer
|
LL | let _y = addr_of!(X);
| ~~~~~~~~~ +
```
```
error[E0560]: struct `S` has no field named `x`
--> $DIR/nested-non-tuple-tuple-struct.rs:8:19
|
LL | pub struct S(f32, f32);
| - `S` defined here
...
LL | let _x = (S { x: 1.0, y: 2.0 }, S { x: 3.0, y: 4.0 });
| ^ field does not exist
|
help: `S` is a tuple struct, use the appropriate syntax
|
LL | let _x = (S(/* f32 */, /* f32 */), S { x: 3.0, y: 4.0 });
| ~~~~~~~~~~~~~~~~~~~~~~~
```
```
error[E0533]: expected value, found struct variant `E::Empty3`
--> $DIR/empty-struct-braces-expr.rs:18:14
|
LL | let e3 = E::Empty3;
| ^^^^^^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | let e3 = E::Empty3 {};
| ++
```
```
error[E0533]: expected value, found struct variant `E::V`
--> $DIR/struct-literal-variant-in-if.rs:10:13
|
LL | if x == E::V { field } {}
| ^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | if x == (E::V { field }) {}
| + +
```
```
error[E0618]: expected function, found enum variant `Enum::Unit`
--> $DIR/suggestion-highlights.rs:15:5
|
LL | Unit,
| ---- enum variant `Enum::Unit` defined here
...
LL | Enum::Unit();
| ^^^^^^^^^^--
| |
| call expression requires function
|
help: `Enum::Unit` is a unit enum variant, and does not take parentheses to be constructed
|
LL - Enum::Unit();
LL + Enum::Unit;
|
```
```
error[E0599]: no variant or associated item named `tuple` found for enum `Enum` in the current scope
--> $DIR/suggestion-highlights.rs:36:11
|
LL | enum Enum {
| --------- variant or associated item `tuple` not found for this enum
...
LL | Enum::tuple;
| ^^^^^ variant or associated item not found in `Enum`
|
help: there is a variant with a similar name
|
LL | Enum::Tuple(/* i32 */);
| ~~~~~~~~~~~~~~~~;
|
```
Use ordinal number in argument error
Add an ordinal number to two argument errors ("unexpected" and "missing") for ease of understanding error.
```
error[E0061]: this function takes 3 arguments but 2 arguments were supplied
--> test.rs:11:5
|
11 | f(42, 'a');
| ^ --- 2nd argument of type `f32` is missing
|
(snip)
error[E0061]: this function takes 3 arguments but 4 arguments were supplied
--> test.rs:12:5
|
12 | f(42, 42, 1.0, 'a');
| ^ ----
| | |
| | unexpected 2nd argument of type `{integer}`
| help: remove the extra argument
```
To get an ordinal number, I copied `ordinalize` from other crate `rustc_resolve` because I think it is too much to link `rustc_resolve` for this small function. Please let me know if there is a better way.
Make parse error suggestions verbose and fix spans
Go over all structured parser suggestions and make them verbose style.
When suggesting to add or remove delimiters, turn them into multiple suggestion parts.
Go over all structured parser suggestions and make them verbose style.
When suggesting to add or remove delimiters, turn them into multiple suggestion parts.
Change E0369 to give note informations for foreign items.
Change E0369 to give note informations for foreign items.
Make it easy for developers to understand why the binop cannot be applied.
fixes#125631
Detect unused structs which derived Default
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Fixes#98871
Fix `...` in multline code-skips in suggestions
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was inconsistent with what we do in every other case *and* off-center.
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was consistent with what we do in every other case.
Detect pub structs never constructed and unused associated constants
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Lints never constructed public structs.
If we don't provide public methods to construct public structs with private fields, and don't construct them in the local crate. They would be never constructed. So that we can detect such public structs.
---
Update:
Also lints unused associated constants in traits.
Winnow private method candidates instead of assuming any candidate of the right name will apply
partially reverts https://github.com/rust-lang/rust/pull/60721
My original motivation was just to avoid the `delay_span_bug` (by attempting to thread the `ErrorGuaranteed` through to here). But then I realized that the error message is wrong. It refers to the `Foo<A>::foo` instead of `Foo<B>::foo`. This is almost invisible, because both functions are the same, but on different lines, so `-Zui-testing` makes it so the test is the same no matter which of these two functions is referenced.
But there's a much more obvious bug: If `Foo<B>` does not have a `foo` method at all, but `Foo<A>` has a private `foo` method, then we'll refer to that one. This has now been fixed, and we report a normal `method not found` error.
The way this is done is by creating a list of all possible private functions (just like we create a list of the public functions that can actually be called), and then winnowing it by analyzing where bounds and `Self` types to see if any of the found methods can actually apply (again, just like with the list of public functions).
I wonder if there is room for doing the same thing with unstable functions instead of running all of method resolution twice.
r? ``@compiler-errors`` for method resolution stuff
Use parenthetical notation for `Fn` traits
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Address #67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Fix#67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```
This adds the `only-apple`/`ignore-apple` compiletest directive, and
uses that basically everywhere instead of `only-macos`/`ignore-macos`.
Some of the updates in `run-make` are a bit redundant, as they use
`ignore-cross-compile` and won't run on iOS - but using Apple in these
is still more correct, so I've made that change anyhow.
Remove suggestion about iteration count in coerce
Fixes#122561
The iteration count-centric suggestion was implemented in PR #100094, but it was based on the wrong assumption that the type mismatch error depends on the number of times the loop iterates. As it turns out, that is not true (see this comment for details: https://github.com/rust-lang/rust/pull/122679#issuecomment-2017432531)
This PR attempts to remedy the situation by changing the suggestion from the one centered on iteration count to a simple suggestion to add a return value.
It should also fix#100285 by simply making it redundant.