os-rust/compiler/rustc_codegen_llvm
Trevor Gross 3f9aa50b70
Rollup merge of #124874 - jedbrown:float-mul-add-fast, r=saethlin
intrinsics fmuladdf{32,64}: expose llvm.fmuladd.* semantics

Add intrinsics `fmuladd{f32,f64}`. This computes `(a * b) + c`, to be fused if the code generator determines that (i) the target instruction set has support for a fused operation, and (ii) that the fused operation is more efficient than the equivalent, separate pair of `mul` and `add` instructions.

https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic

The codegen_cranelift uses the `fma` function from libc, which is a correct implementation, but without the desired performance semantic. I think this requires an update to cranelift to expose a suitable instruction in its IR.

I have not tested with codegen_gcc, but it should behave the same way (using `fma` from libc).

---
This topic has been discussed a few times on Zulip and was suggested, for example, by `@workingjubilee` in [Effect of fma disabled](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/Effect.20of.20fma.20disabled/near/274179331).
2024-10-11 23:57:44 -04:00
..
src Rollup merge of #124874 - jedbrown:float-mul-add-fast, r=saethlin 2024-10-11 23:57:44 -04:00
Cargo.toml compiler: Factor rustc_target::abi out of cg_llvm 2024-10-08 18:24:56 -07:00
messages.ftl codegen_ssa: consolidate tied feature checking 2024-09-24 15:48:49 +01:00
README.md mv compiler to compiler/ 2020-08-30 18:45:07 +03:00

The codegen crate contains the code to convert from MIR into LLVM IR, and then from LLVM IR into machine code. In general it contains code that runs towards the end of the compilation process.

For more information about how codegen works, see the rustc dev guide.