os-rust/tests/assembly/stack-protector/stack-protector-heuristics-effect.rs

398 lines
12 KiB
Rust

// revisions: all strong basic none missing
// assembly-output: emit-asm
// ignore-macos slightly different policy on stack protection of arrays
// ignore-windows stack check code uses different function names
// ignore-nvptx64 stack protector is not supported
// ignore-wasm32-bare
// [all] compile-flags: -Z stack-protector=all
// [strong] compile-flags: -Z stack-protector=strong
// [basic] compile-flags: -Z stack-protector=basic
// [none] compile-flags: -Z stack-protector=none
// compile-flags: -C opt-level=2 -Z merge-functions=disabled
// min-llvm-version: 17.0.2
#![crate_type = "lib"]
#![allow(incomplete_features)]
#![feature(unsized_locals, unsized_fn_params)]
// CHECK-LABEL: emptyfn:
#[no_mangle]
pub fn emptyfn() {
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: array_char
#[no_mangle]
pub fn array_char(f: fn(*const char)) {
let a = ['c'; 1];
let b = ['d'; 3];
let c = ['e'; 15];
f(&a as *const _);
f(&b as *const _);
f(&c as *const _);
// Any type of local array variable leads to stack protection with the
// "strong" heuristic. The 'basic' heuristic only adds stack protection to
// functions with local array variables of a byte-sized type, however. Since
// 'char' is 4 bytes in Rust, this function is not protected by the 'basic'
// heuristic
//
// (This test *also* takes the address of the local stack variables. We
// cannot know that this isn't what triggers the `strong` heuristic.
// However, the test strategy of passing the address of a stack array to an
// external function is sufficient to trigger the `basic` heuristic (see
// test `array_u8_large()`). Since the `basic` heuristic only checks for the
// presence of stack-local array variables, we can be confident that this
// test also captures this part of the `strong` heuristic specification.)
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: array_u8_1
#[no_mangle]
pub fn array_u8_1(f: fn(*const u8)) {
let a = [0u8; 1];
f(&a as *const _);
// The 'strong' heuristic adds stack protection to functions with local
// array variables regardless of their size.
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: array_u8_small:
#[no_mangle]
pub fn array_u8_small(f: fn(*const u8)) {
let a = [0u8; 2];
let b = [0u8; 7];
f(&a as *const _);
f(&b as *const _);
// Small arrays do not lead to stack protection by the 'basic' heuristic.
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: array_u8_large:
#[no_mangle]
pub fn array_u8_large(f: fn(*const u8)) {
let a = [0u8; 9];
f(&a as *const _);
// Since `a` is a byte array with size greater than 8, the basic heuristic
// will also protect this function.
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
#[derive(Copy, Clone)]
pub struct ByteSizedNewtype(u8);
// CHECK-LABEL: array_bytesizednewtype_9:
#[no_mangle]
pub fn array_bytesizednewtype_9(f: fn(*const ByteSizedNewtype)) {
let a = [ByteSizedNewtype(0); 9];
f(&a as *const _);
// Since `a` is a byte array in the LLVM output, the basic heuristic will
// also protect this function.
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: local_var_addr_used_indirectly
#[no_mangle]
pub fn local_var_addr_used_indirectly(f: fn(bool)) {
let a = 5;
let a_addr = &a as *const _ as usize;
f(a_addr & 0x10 == 0);
// This function takes the address of a local variable taken. Although this
// address is never used as a way to refer to stack memory, the `strong`
// heuristic adds stack smash protection. This is also the case in C++:
// ```
// cat << EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// void f(void (*g)(bool)) {
// int32_t x;
// g((reinterpret_cast<uintptr_t>(&x) & 0x10U) == 0);
// }
// EOF
// ```
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: local_string_addr_taken
#[no_mangle]
pub fn local_string_addr_taken(f: fn(&String)) {
let x = String::new();
f(&x);
// Taking the address of the local variable `x` leads to stack smash
// protection with the `strong` heuristic, but not with the `basic`
// heuristic. It does not matter that the reference is not mut.
//
// An interesting note is that a similar function in C++ *would* be
// protected by the `basic` heuristic, because `std::string` has a char
// array internally as a small object optimization:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector -S -x c++ - -o - | grep stack_chk
// #include <string>
// void f(void (*g)(const std::string&)) {
// std::string x;
// g(x);
// }
// EOF
// ```
//
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
pub trait SelfByRef {
fn f(&self) -> i32;
}
impl SelfByRef for i32 {
fn f(&self) -> i32 {
return self + 1;
}
}
// CHECK-LABEL: local_var_addr_taken_used_locally_only
#[no_mangle]
pub fn local_var_addr_taken_used_locally_only(factory: fn() -> i32, sink: fn(i32)) {
let x = factory();
let g = x.f();
sink(g);
// Even though the local variable conceptually has its address taken, as
// it's passed by reference to the trait function, the use of the reference
// is easily inlined. There is therefore no stack smash protection even with
// the `strong` heuristic.
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
pub struct Gigastruct {
does: u64,
not: u64,
have: u64,
array: u64,
members: u64
}
// CHECK-LABEL: local_large_var_moved
#[no_mangle]
pub fn local_large_var_moved(f: fn(Gigastruct)) {
let x = Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 };
f(x);
// Even though the local variable conceptually doesn't have its address
// taken, it's so large that the "move" is implemented with a reference to a
// stack-local variable in the ABI. Consequently, this function *is*
// protected by the `strong` heuristic. This is also the case for
// rvalue-references in C++, regardless of struct size:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// void f(void (*g)(uint64_t&&)) {
// uint64_t x;
// g(std::move(x));
// }
// EOF
// ```
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: local_large_var_cloned
#[no_mangle]
pub fn local_large_var_cloned(f: fn(Gigastruct)) {
f(Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 });
// A new instance of `Gigastruct` is passed to `f()`, without any apparent
// connection to this stack frame. Still, since instances of `Gigastruct`
// are sufficiently large, it is allocated in the caller stack frame and
// passed as a pointer. As such, this function is *also* protected by the
// `strong` heuristic, just like `local_large_var_moved`. This is also the
// case for pass-by-value of sufficiently large structs in C++:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// struct Gigastruct { uint64_t a, b, c, d, e; };
// void f(void (*g)(Gigastruct)) {
// g(Gigastruct{});
// }
// EOF
// ```
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
extern "C" {
// A call to an external `alloca` function is *not* recognized as an
// `alloca(3)` operation. This function is a compiler built-in, as the
// man page explains. Clang translates it to an LLVM `alloca`
// instruction with a count argument, which is also what the LLVM stack
// protector heuristics looks for. The man page for `alloca(3)` details
// a way to avoid using the compiler built-in: pass a -std=c11
// argument, *and* don't include <alloca.h>. Though this leads to an
// external alloca() function being called, it doesn't lead to stack
// protection being included. It even fails with a linker error
// "undefined reference to `alloca'". Example:
// ```
// cat<<EOF | clang -fstack-protector-strong -x c -std=c11 - -o /dev/null
// #include <stdlib.h>
// void * alloca(size_t);
// void f(void (*g)(void*)) {
// void * p = alloca(10);
// g(p);
// }
// int main() { return 0; }
// EOF
// ```
// The following tests demonstrate that calls to an external `alloca`
// function in Rust also doesn't trigger stack protection.
fn alloca(size: usize) -> *mut ();
}
// CHECK-LABEL: alloca_small_compile_time_constant_arg
#[no_mangle]
pub fn alloca_small_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(8) });
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: alloca_large_compile_time_constant_arg
#[no_mangle]
pub fn alloca_large_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(9) });
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: alloca_dynamic_arg
#[no_mangle]
pub fn alloca_dynamic_arg(f: fn(*mut ()), n: usize) {
f(unsafe { alloca(n) });
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// The question then is: in what ways can Rust code generate array-`alloca`
// LLVM instructions? This appears to only be generated by
// rustc_codegen_ssa::traits::Builder::array_alloca() through
// rustc_codegen_ssa::mir::operand::OperandValue::store_unsized(). FWICT
// this is support for the "unsized locals" unstable feature:
// https://doc.rust-lang.org/unstable-book/language-features/unsized-locals.html.
// CHECK-LABEL: unsized_fn_param
#[no_mangle]
pub fn unsized_fn_param(s: [u8], l: bool, f: fn([u8])) {
let n = if l { 1 } else { 2 };
f(*Box::<[u8]>::from(&s[0..n])); // slice-copy with Box::from
// Even though slices are conceptually passed by-value both into this
// function and into `f()`, this is implemented with pass-by-reference
// using a suitably constructed fat-pointer (as if the functions
// accepted &[u8]). This function therefore doesn't need dynamic array
// alloca, and is therefore not protected by the `strong` or `basic`
// heuristics.
// all: __stack_chk_fail
// strong-NOT: __stack_chk_fail
// basic-NOT: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}
// CHECK-LABEL: unsized_local
#[no_mangle]
pub fn unsized_local(s: &[u8], l: bool, f: fn(&mut [u8])) {
let n = if l { 1 } else { 2 };
let mut a: [u8] = *Box::<[u8]>::from(&s[0..n]); // slice-copy with Box::from
f(&mut a);
// This function allocates a slice as a local variable in its stack
// frame. Since the size is not a compile-time constant, an array
// alloca is required, and the function is protected by both the
// `strong` and `basic` heuristic.
// all: __stack_chk_fail
// strong: __stack_chk_fail
// basic: __stack_chk_fail
// none-NOT: __stack_chk_fail
// missing-NOT: __stack_chk_fail
}