b70654199a
Hook up std::net to wasi-libc on wasm32-wasip2 target One of the improvements of the `wasm32-wasip2` target over `wasm32-wasip1` is better support for networking. Right now, p2 is just re-using the `std::net` implementation from p1. This PR adds a new net module for p2 that makes use of net from `sys_common` and calls wasi-libc functions directly. There are currently a few limitations: - Duplicating a socket is not supported by WASIp2 (directly returns an error) - Peeking is not yet implemented in wasi-libc (we could let wasi-libc handle this, but I opted to directly return an error instead) - Vectored reads/writes are not supported by WASIp2 (the necessary functions are available in wasi-libc, but they call WASIp1 functions which do not support sockets, so I opted to directly return an error instead) - Getting/setting `TCP_NODELAY` is faked in wasi-libc (uses the fake implementation instead of returning an error) - Getting/setting `SO_LINGER` is not supported by WASIp2 (directly returns an error) - Setting `SO_REUSEADDR` is faked in wasi-libc (since this is done from `sys_common`, the fake implementation is used instead of returning an error) - Getting/setting `IPV6_V6ONLY` is not supported by WASIp2 and will always be set for IPv6 sockets (since this is done from `sys_common`, wasi-libc will return an error) - UDP broadcast/multicast is not supported by WASIp2 (since this is configured from `sys_common`, wasi-libc will return appropriate errors) - The `MSG_NOSIGNAL` send flag is a no-op because there are no signals in WASIp2 (since explicitly setting this flag would require a change to `sys_common` and the result would be exactly the same, I opted to not set it) Do those decisions make sense? While working on this PR, I noticed that there is a `std::os::wasi::net::TcpListenerExt` trait that adds a `sock_accept()` method to `std::net::TcpListener`. Now that WASIp2 supports standard accept, would it make sense to remove this? cc `@alexcrichton` |
||
---|---|---|
.github | ||
compiler | ||
library | ||
LICENSES | ||
src | ||
tests | ||
.clang-format | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.ignore | ||
.mailmap | ||
Cargo.lock | ||
Cargo.toml | ||
CODE_OF_CONDUCT.md | ||
config.example.toml | ||
configure | ||
CONTRIBUTING.md | ||
COPYRIGHT | ||
INSTALL.md | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
RELEASES.md | ||
REUSE.toml | ||
rust-bors.toml | ||
rustfmt.toml | ||
triagebot.toml | ||
x | ||
x.ps1 | ||
x.py |
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Why Rust?
-
Performance: Fast and memory-efficient, suitable for critical services, embedded devices, and easily integrate with other languages.
-
Reliability: Our rich type system and ownership model ensure memory and thread safety, reducing bugs at compile-time.
-
Productivity: Comprehensive documentation, a compiler committed to providing great diagnostics, and advanced tooling including package manager and build tool (Cargo), auto-formatter (rustfmt), linter (Clippy) and editor support (rust-analyzer).
Quick Start
Read "Installation" from The Book.
Installing from Source
If you really want to install from source (though this is not recommended), see INSTALL.md.
Getting Help
See https://www.rust-lang.org/community for a list of chat platforms and forums.
Contributing
See CONTRIBUTING.md.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the "Rust Trademarks").
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.