granite-rust/library/core/tests/array.rs
kadmin f6411e4c66 Add Array Impl Lang Item in various places
Add basic test

And also run fmt which is where the other changes are from

Fix mut issues

These only appear when running tests, so resolved by adding mut

Swap order of forget

Add pub and rm guard impl

Add explicit type to guard

Add safety note

Change guard type from T to S

It should never have been T, as it guards over [MaybeUninit<S>; N]
Also add feature to test
2020-08-13 03:50:57 +00:00

299 lines
7.8 KiB
Rust

use core::array::{FixedSizeArray, IntoIter};
use core::convert::TryFrom;
#[test]
fn fixed_size_array() {
let mut array = [0; 64];
let mut zero_sized = [(); 64];
let mut empty_array = [0; 0];
let mut empty_zero_sized = [(); 0];
assert_eq!(FixedSizeArray::as_slice(&array).len(), 64);
assert_eq!(FixedSizeArray::as_slice(&zero_sized).len(), 64);
assert_eq!(FixedSizeArray::as_slice(&empty_array).len(), 0);
assert_eq!(FixedSizeArray::as_slice(&empty_zero_sized).len(), 0);
assert_eq!(FixedSizeArray::as_mut_slice(&mut array).len(), 64);
assert_eq!(FixedSizeArray::as_mut_slice(&mut zero_sized).len(), 64);
assert_eq!(FixedSizeArray::as_mut_slice(&mut empty_array).len(), 0);
assert_eq!(FixedSizeArray::as_mut_slice(&mut empty_zero_sized).len(), 0);
}
#[test]
fn array_try_from() {
macro_rules! test {
($($N:expr)+) => {
$({
type Array = [u8; $N];
let array: Array = [0; $N];
let slice: &[u8] = &array[..];
let result = <&Array>::try_from(slice);
assert_eq!(&array, result.unwrap());
})+
}
}
test! {
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32
}
}
#[test]
fn iterator_collect() {
let arr = [0, 1, 2, 5, 9];
let v: Vec<_> = IntoIter::new(arr.clone()).collect();
assert_eq!(&arr[..], &v[..]);
}
#[test]
fn iterator_rev_collect() {
let arr = [0, 1, 2, 5, 9];
let v: Vec<_> = IntoIter::new(arr.clone()).rev().collect();
assert_eq!(&v[..], &[9, 5, 2, 1, 0]);
}
#[test]
fn iterator_nth() {
let v = [0, 1, 2, 3, 4];
for i in 0..v.len() {
assert_eq!(IntoIter::new(v.clone()).nth(i).unwrap(), v[i]);
}
assert_eq!(IntoIter::new(v.clone()).nth(v.len()), None);
let mut iter = IntoIter::new(v);
assert_eq!(iter.nth(2).unwrap(), v[2]);
assert_eq!(iter.nth(1).unwrap(), v[4]);
}
#[test]
fn iterator_last() {
let v = [0, 1, 2, 3, 4];
assert_eq!(IntoIter::new(v).last().unwrap(), 4);
assert_eq!(IntoIter::new([0]).last().unwrap(), 0);
let mut it = IntoIter::new([0, 9, 2, 4]);
assert_eq!(it.next_back(), Some(4));
assert_eq!(it.last(), Some(2));
}
#[test]
fn iterator_clone() {
let mut it = IntoIter::new([0, 2, 4, 6, 8]);
assert_eq!(it.next(), Some(0));
assert_eq!(it.next_back(), Some(8));
let mut clone = it.clone();
assert_eq!(it.next_back(), Some(6));
assert_eq!(clone.next_back(), Some(6));
assert_eq!(it.next_back(), Some(4));
assert_eq!(clone.next_back(), Some(4));
assert_eq!(it.next(), Some(2));
assert_eq!(clone.next(), Some(2));
}
#[test]
fn iterator_fused() {
let mut it = IntoIter::new([0, 9, 2]);
assert_eq!(it.next(), Some(0));
assert_eq!(it.next(), Some(9));
assert_eq!(it.next(), Some(2));
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
}
#[test]
fn iterator_len() {
let mut it = IntoIter::new([0, 1, 2, 5, 9]);
assert_eq!(it.size_hint(), (5, Some(5)));
assert_eq!(it.len(), 5);
assert_eq!(it.is_empty(), false);
assert_eq!(it.next(), Some(0));
assert_eq!(it.size_hint(), (4, Some(4)));
assert_eq!(it.len(), 4);
assert_eq!(it.is_empty(), false);
assert_eq!(it.next_back(), Some(9));
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(it.len(), 3);
assert_eq!(it.is_empty(), false);
// Empty
let it = IntoIter::new([] as [String; 0]);
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.len(), 0);
assert_eq!(it.is_empty(), true);
}
#[test]
fn iterator_count() {
let v = [0, 1, 2, 3, 4];
assert_eq!(IntoIter::new(v.clone()).count(), 5);
let mut iter2 = IntoIter::new(v);
iter2.next();
iter2.next();
assert_eq!(iter2.count(), 3);
}
#[test]
fn iterator_flat_map() {
assert!((0..5).flat_map(|i| IntoIter::new([2 * i, 2 * i + 1])).eq(0..10));
}
#[test]
fn iterator_debug() {
let arr = [0, 1, 2, 5, 9];
assert_eq!(format!("{:?}", IntoIter::new(arr)), "IntoIter([0, 1, 2, 5, 9])",);
}
#[test]
fn iterator_drops() {
use core::cell::Cell;
// This test makes sure the correct number of elements are dropped. The `R`
// type is just a reference to a `Cell` that is incremented when an `R` is
// dropped.
#[derive(Clone)]
struct Foo<'a>(&'a Cell<usize>);
impl Drop for Foo<'_> {
fn drop(&mut self) {
self.0.set(self.0.get() + 1);
}
}
fn five(i: &Cell<usize>) -> [Foo<'_>; 5] {
// This is somewhat verbose because `Foo` does not implement `Copy`
// since it implements `Drop`. Consequently, we cannot write
// `[Foo(i); 5]`.
[Foo(i), Foo(i), Foo(i), Foo(i), Foo(i)]
}
// Simple: drop new iterator.
let i = Cell::new(0);
{
IntoIter::new(five(&i));
}
assert_eq!(i.get(), 5);
// Call `next()` once.
let i = Cell::new(0);
{
let mut iter = IntoIter::new(five(&i));
let _x = iter.next();
assert_eq!(i.get(), 0);
assert_eq!(iter.count(), 4);
assert_eq!(i.get(), 4);
}
assert_eq!(i.get(), 5);
// Check `clone` and calling `next`/`next_back`.
let i = Cell::new(0);
{
let mut iter = IntoIter::new(five(&i));
iter.next();
assert_eq!(i.get(), 1);
iter.next_back();
assert_eq!(i.get(), 2);
let mut clone = iter.clone();
assert_eq!(i.get(), 2);
iter.next();
assert_eq!(i.get(), 3);
clone.next();
assert_eq!(i.get(), 4);
assert_eq!(clone.count(), 2);
assert_eq!(i.get(), 6);
}
assert_eq!(i.get(), 8);
// Check via `nth`.
let i = Cell::new(0);
{
let mut iter = IntoIter::new(five(&i));
let _x = iter.nth(2);
assert_eq!(i.get(), 2);
let _y = iter.last();
assert_eq!(i.get(), 3);
}
assert_eq!(i.get(), 5);
// Check every element.
let i = Cell::new(0);
for (index, _x) in IntoIter::new(five(&i)).enumerate() {
assert_eq!(i.get(), index);
}
assert_eq!(i.get(), 5);
let i = Cell::new(0);
for (index, _x) in IntoIter::new(five(&i)).rev().enumerate() {
assert_eq!(i.get(), index);
}
assert_eq!(i.get(), 5);
}
// This test does not work on targets without panic=unwind support.
// To work around this problem, test is marked is should_panic, so it will
// be automagically skipped on unsuitable targets, such as
// wasm32-unknown-unkown.
//
// It means that we use panic for indicating success.
#[test]
#[should_panic(expected = "test succeeded")]
fn array_default_impl_avoids_leaks_on_panic() {
use core::sync::atomic::{AtomicUsize, Ordering::Relaxed};
static COUNTER: AtomicUsize = AtomicUsize::new(0);
#[derive(Debug)]
struct Bomb(usize);
impl Default for Bomb {
fn default() -> Bomb {
if COUNTER.load(Relaxed) == 3 {
panic!("bomb limit exceeded");
}
COUNTER.fetch_add(1, Relaxed);
Bomb(COUNTER.load(Relaxed))
}
}
impl Drop for Bomb {
fn drop(&mut self) {
COUNTER.fetch_sub(1, Relaxed);
}
}
let res = std::panic::catch_unwind(|| <[Bomb; 5]>::default());
let panic_msg = match res {
Ok(_) => unreachable!(),
Err(p) => p.downcast::<&'static str>().unwrap(),
};
assert_eq!(*panic_msg, "bomb limit exceeded");
// check that all bombs are successfully dropped
assert_eq!(COUNTER.load(Relaxed), 0);
panic!("test succeeded")
}
#[test]
fn empty_array_is_always_default() {
struct DoesNotImplDefault;
let _arr = <[DoesNotImplDefault; 0]>::default();
}
#[test]
fn array_map() {
let a = [1, 2, 3];
let b = a.map(|v| v + 1);
assert_eq!(b, [2, 3, 4]);
}