We recently had an issue because some rustlib files were missing (like: "error[E0463]: can't find crate for rustc_ast")
when building tools that rely on rustc. This patch fixes that by copying those files as required.
Signed-off-by: onur-ozkan <work@onurozkan.dev>
rustc_driver_impl: remove some old dead logic
This got added in 5013952e4a, before `cfg(target_feature)` was stable. It should not be needed any more ever since `cfg(target_feature)` is stable.
Move `SanityCheck` and `MirPass`
They are currently in `rustc_middle`. This PR moves them to `rustc_mir_transform`, which makes more sense.
r? ``@cjgillot``
do not attempt to prove unknowable goals
In case a goal is unknowable, we previously still checked all other possible ways to prove this goal, even though its final result is already guaranteed to be ambiguous. By ignoring all other candidates in that case we can avoid a lot of unnecessary work, fixing the performance regression in typenum found in #121848.
This is already the behavior in the old solver. This could in theory cause future-compatability issues as considering fewer goals unknowable may end up causing performance regressions/hangs. I am quite confident that this will not be an issue.
r? ``@compiler-errors``
update comment regarding TargetOptions.features
The claim that `-Ctarget-features` cannot disable these features set in the target spec is definitely wrong -- I tried it for `x86_64-pc-windows-gnu`, which enables SSE3 that way. Building with `-Ctarget-feature=-sse3` works fine, and `cfg!(target_feature = "sse3")` is `false` in that build.
There are also some indications that these are actually intended to be overwritten:
3b14526cea/compiler/rustc_target/src/spec/targets/i686_unknown_uefi.rs (L22-L23)84ac80f192/compiler/rustc_target/src/spec/targets/x86_64h_apple_darwin.rs (L18-L23)
So... let's update the comment to match reality, I guess?
The claim that they overwrite `-Ctarget-cpu` is based on
- for `native`, the comment in the apple target spec quoted above
- for other CPU strings, the assumption that `LLVMRustCreateTargetMachine` will apply these features after doing whatever the base CPU model does. I am not sure how to check that, I hope some LLVM backend people can chime in. :)
Document the broken C ABI of `wasm32-unknown-unknown`
Inspired by discussion on
https://github.com/rust-lang/rust/issues/129486 this is intended to at least document the current state of the world in a more public location than throughout a series of issues.
Non-exhaustive structs may be empty
This is a follow-up to a discrepancy noticed in https://github.com/rust-lang/rust/pull/122792: today, the following struct is considered inhabited (non-empty) outside its defining crate:
```rust
#[non_exhaustive]
pub struct UninhabitedStruct {
pub never: !,
// other fields
}
```
`#[non_exhaustive]` on a struct should mean that adding fields to it isn't a breaking change. There is no way that adding fields to this struct could make it non-empty since the `never` field must stay and is inconstructible. I suspect this was implemented this way due to confusion with `#[non_exhaustive]` enums, which indeed should be considered non-empty outside their defining crate.
I propose that we consider such a struct uninhabited (empty), just like it would be without the `#[non_exhaustive]` annotation.
Code that doesn't pass today and will pass after this:
```rust
// In a different crate
fn empty_match_on_empty_struct<T>(x: UninhabitedStruct) -> T {
match x {}
}
```
This is not a breaking change.
r? ``@compiler-errors``
Don't Suggest Labeling `const` and `unsafe` Blocks
Fixes#128604
Previously, both anonymous constant blocks (E.g. The labeled block
inside `['_'; 'block: { break 'block 1 + 2; }]`) and inline const
blocks (E.g. `const { ... }`) were considered to be the same
kind of blocks. This caused the compiler to incorrectly suggest
labeling both the blocks when only anonymous constant blocks can be
labeled.
This PR adds an other enum variant to `Context` so that both the
blocks can be handled appropriately.
Also, adds some doc comments and removes unnecessary `&mut` in a
couple of places.
Suggest `impl Trait` for References to Bare Trait in Function Header
Fixes#125139
This PR suggests `impl Trait` when `&Trait` is found as a function parameter type or return type. This makes use of existing diagnostics by adding `peel_refs()` when checking for type equality.
Additionaly, it makes a few other improvements:
1. Checks if functions inside impl blocks have bare trait in their headers.
2. Introduces a trait `NextLifetimeParamName` similar to the existing `NextTypeParamName` for suggesting a lifetime name. Also, abstracts out the common logic between the two trait impls.
### Related Issues
I ran into a bunch of related diagnostic issues but couldn't fix them within the scope of this PR. So, I have created the following issues:
1. [Misleading Suggestion when Returning a Reference to a Bare Trait from a Function](https://github.com/rust-lang/rust/issues/127689)
2. [Verbose Error When a Function Takes a Bare Trait as Parameter](https://github.com/rust-lang/rust/issues/127690)
3. [Incorrect Suggestion when Returning a Bare Trait from a Function](https://github.com/rust-lang/rust/issues/127691)
r? ```@estebank``` since you implemented #119148
Enable native libraries on macOS
Fixes#3595 by using `-fvisibility=hidden` and the visibility attribute supported by both gcc and clang rather than the previous gcc-only mechanism for symbol hiding. Also brings over cfg changes from #3594 which enable native-lib functionality on all unixes.
Thanks for taking a look, feedback very welcome!
cc `@RalfJung`
Fixes#3595 by using -fvisibility=hidden and the visibility attribute supported by both gcc and clang rather than the previous gcc-only mechanism for symbol hiding. Also brings over cfg changes from #3594 which enable native-lib functionality on all unixes.