const: make ptr.is_null() stop execution on ambiguity
This seems better than saying `false` -- saying `false` is in fact actively unsound if `NonNull` then uses this to permit putting this pointer inside of it, but at runtime it turns out to be null.
Part of https://github.com/rust-lang/rust/issues/74939
Cc ```@rust-lang/wg-const-eval```
remove 'const' from 'Option::iter'
This is kind of pointless to be a `const fn` since you can't do anything with the iterator. It is also the only `const fn iter*` in the entire standard library. It probably got constified when `~const` traits got added everywhere, and then was forgotten to be de-constified when that was undone.
The rest of the const_option feature seems like it can reasonably be stabilized, but this one IMO should not be stabilized, and it's not worth creating a new tracking issue.
Cc https://github.com/rust-lang/rust/issues/67441
run-make-support: Add llvm-pdbutil
Add llvm-pdbutil to run-make-support, so we can write better unit tests for PDB specific features.
r? ````@jieyouxu````
````@rustbot```` label: +O-windows
Use sysroot crates maximally in `rustc_codegen_gcc`.
This shrinks `compiler/rustc_codegen_gcc/Cargo.lock` quite a bit. The only remaining dependencies in `compiler/rustc_codegen_gcc/Cargo.lock` are `gccjit`, `lang_tester`, and `boml`, all of which aren't used in any other compiler crates.
The commit also reorders and adds comments to the `extern crate` items so they match those in miri.
r? ```@Mark-Simulacrum```
rustdoc: normalise type/field names
Updates #100961
- `Import` -> `Use`, to better reflect the terminology of Rust & its syntax
- `TypeBinding` -> `AssocItemConstraint`, to sync up with `clean`
- `FnDecl` -> `FunctionSignature`, because that's what it is
- `Header` -> `FunctionHeader`, because `Header` is a very word that's very heavily loaded with different meanings
- `ItemEnum::AssocType`: `default` -> `type`, because those items appear in `impl` blocks as well, where they're _not_ the "default"
- `ItemEnum::AssocConst`: `default` -> `value`, see the previous point
- `ForeignType` -> `ExternType`, because "foreign" is not the right word there
- boolean fields' names made to consistently be a phrase that can be a yes/no answer, e.g. `async` -> `is_async`
The docs of `ItemEnum::AssocType::type_` & of `ItemEnum::AssocConst::value` are also updated to be up to date with the clarification of the name of the fields
detect incompatible CI LLVM options more precisely
Previously, the logic here was simply checking whether the option was set in `config.toml`. This approach was not manageable in our CI runners as we set so many options in config.toml. In reality, those values are not incompatible since they are usually the same value used to generate the CI llvm. Now, the new logic compares the configuration values with the values used to generate the CI llvm, so we get more precise results and make the process more manageable.
Fixes#129153
It's a very thin wrapper that pairs `MoveDataBuilder` with a `Location`,
and it has four lifetime arguments. This commit removes it by just
adding a `Location` to `MoveDataBuilder`.
There are four related dataflow structs: `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`,
`DefinitelyInitializedPlaces`. They all have a `&Body` and a
`&MoveData<'tcx>` field. The first three use different lifetimes for the
two fields, but the last one uses the same lifetime for both.
This commit changes the first three to use the same lifetime, removing
the need for one of the lifetimes. Other structs that also lose a
lifetime as a result of this are `LivenessContext`, `LivenessResults`,
`InitializationData`.
It then does similar things in various other structs.
Currently it constructs two vectors `calls_to_terminated` and
`cleanups_to_remove` in the main loop, and then processes them after the
main loop. But the processing can be done in the main loop, avoiding the
need for the vectors.
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`
Previously, the logic here was simply checking whether the option was set in `config.toml`.
This approach was not manageable in our CI runners as we set so many options in config.toml.
In reality, those values are not incompatible since they are usually the same value used to generate
the CI llvm. Now, the new logic compares the configuration values with the values used to generate
the CI llvm, so we get more precise results and make the process more manageable.
Signed-off-by: onur-ozkan <work@onurozkan.dev>