This commit changes the error reporting mechanism for not implemented
traits to skip impl marked as `#[diagnostic::do_not_recommend]` in the
help part of the error message ("the following other types implement
trait `Foo`:"). The main use case here is to allow crate authors to skip
non-meaningful confusing suggestions. A common example for this are
fully generic impls on tuples.
Uplift elaboration into `rustc_type_ir`
Allows us to deduplicate and consolidate elaboration (including these stupid elaboration duplicate fns i added for pretty printing like 3 years ago) so I'm pretty hyped about this change :3
r? lcnr
Make `can_eq` process obligations (almost) everywhere
Move `can_eq` to an extension trait on `InferCtxt` in `rustc_trait_selection`, and change it so that it processes obligations. This should strengthen it to be more accurate in some cases, but is most important for the new trait solver which delays relating aliases to `AliasRelate` goals. Without this, we always basically just return true when passing aliases to `can_eq`, which can lead to weird errors, for example #127149.
I'm not actually certain if we should *have* `can_eq` be called on the good path. In cases where we need `can_eq`, we probably should just be using a regular probe.
Fixes#127149
r? lcnr
Don't try to label `ObligationCauseCode::CompareImplItem` for an RPITIT, since it has no name
The old (current) trait solver has a limitation that when a where clause in param-env must be normalized using the same where clause, then we get spurious errors in `normalize_param_env_or_error`. I don't think there's an issue tracking it, but it's the root cause for many of the "fixed-by-next-solver" labeled issues.
Specifically, these errors may occur when checking predicate entailment of the GAT that comes out of desugaring RPITITs. Since we use `ObligationCauseCode::CompareImplItem` for these predicates, we try calling `item_name` on an RPITIT which fails, since the RPITIT has no name.
We simply suppress this logic when we're reporting a predicate entailment error for an RPITIT. RPITITs should never have predicate entailment errors, *by construction*, but they may due to this bug in the old solver.
Addresses the ICE in #127331, though doesn't fix the underlying issue (which is fundamental to the old solver).
r? types
Use `ControlFlow` results for visitors that are only looking for a single value
These visitors all had a `Option<Value>` or `bool` field, that, once set, was never unset or modified again. They have been refactored by removing the field and returning `ControlFlow` directly from the visitor
Re-implement a type-size based limit
r? lcnr
This PR reintroduces the type length limit added in #37789, which was accidentally made practically useless by the caching changes to `Ty::walk` in #72412, which caused the `walk` function to no longer walk over identical elements.
Hitting this length limit is not fatal unless we are in codegen -- so it shouldn't affect passes like the mir inliner which creates potentially very large types (which we observed, for example, when the new trait solver compiles `itertools` in `--release` mode).
This also increases the type length limit from `1048576 == 2 ** 20` to `2 ** 24`, which covers all of the code that can be reached with craterbot-check. Individual crates can increase the length limit further if desired.
Perf regression is mild and I think we should accept it -- reinstating this limit is important for the new trait solver and to make sure we don't accidentally hit more type-size related regressions in the future.
Fixes#125460
Actually report normalization-based type errors correctly for alias-relate obligations in new solver
We have some special casing to report type mismatch errors that come from projection predicates, but we don't do that for alias-relate obligations. This PR implements that. There's a bit of code duplication, but 🤷
Best reviewed without whitespace.
r? lcnr
Check alias args for WF even if they have escaping bound vars
#### What
This PR stops skipping arguments of aliases if they have escaping bound vars, instead recursing into them and only discarding the resulting obligations referencing bounds vars.
#### An example:
From the test:
```
trait Trait {
type Gat<U: ?Sized>;
}
fn test<T>(f: for<'a> fn(<&'a T as Trait>::Gat<&'a [str]>)) where for<'a> &'a T: Trait {}
//~^ ERROR the size for values of type `[()]` cannot be known at compilation time
fn main() {}
```
We now prove that `str: Sized` in order for `&'a [str]` to be well-formed. We were previously unconditionally skipping over `&'a [str]` as it referenced a buond variable. We now recurse into it and instead only discard the `[str]: 'a` obligation because of the escaping bound vars.
#### Why?
This is a change that improves consistency about proving well-formedness earlier in the pipeline, which is necessary for future work on where-bounds in binders and correctly handling higher-ranked implied bounds. I don't expect this to fix any unsoundness.
#### What doesn't it fix?
Specifically, this doesn't check projection predicates' components are well-formed, because there are too many regressions: https://github.com/rust-lang/rust/pull/123737#issuecomment-2052198478
Automatically taint InferCtxt when errors are emitted
r? `@nnethercote`
Basically `InferCtxt::dcx` now returns a `DiagCtxt` that refers back to the `Cell<Option<ErrorGuaranteed>>` of the `InferCtxt` and thus when invoking `Diag::emit`, and the diagnostic is an error, we taint the `InferCtxt` directly.
That change on its own has no effect at all, because `InferCtxt` already tracks whether errors have been emitted by recording the global error count when it gets opened, and checking at the end whether the count changed. So I removed that error count check, which had a bit of fallout that I immediately fixed by invoking `InferCtxt::dcx` instead of `TyCtxt::dcx` in a bunch of places.
The remaining new errors are because an error was reported in another query, and never bubbled up. I think they are minor enough for this to be ok, and sometimes it actually improves diagnostics, by not silencing useful diagnostics anymore.
fixes#126485 (cc `@olafes)`
There are more improvements we can do (like tainting in hir ty lowering), but I would rather do that in follow up PRs, because it requires some refactorings.
Remove unused `rustc_trait_selection` dependencies
Found using `cargo-machete`. The `bitflags` and `derivative` crates were added for the new trait solver, but weren't removed when the next trait solver code was uplifted to a separate crate.
Implement new effects desugaring
cc `@rust-lang/project-const-traits.` Will write down notes once I have finished.
* [x] See if we want `T: Tr` to desugar into `T: Tr, T::Effects: Compat<true>`
* [x] Fix ICEs on `type Assoc: ~const Tr` and `type Assoc<T: ~const Tr>`
* [ ] add types and traits to minicore test
* [ ] update rustc-dev-guide
Fixes#119717Fixes#123664Fixes#124857Fixes#126148
Allow constraining opaque types during various unsizing casts
allows unsizing of tuples, arrays and Adts to constraint opaque types in their generic parameters to concrete types on either side of the unsizing cast.
Also allows constraining opaque types during trait object casts that only differ in auto traits or lifetimes.
cc #116652
Add `SliceLike` to `rustc_type_ir`, use it in the generic solver code (+ some other changes)
First, we split out `TraitRef::new_from_args` which takes *just* `ty::GenericArgsRef` from `TraitRef::new` which takes `impl IntoIterator<Item: Into<GenericArg>>`. I will explain in a minute why.
Second, we introduce `SliceLike`, which allows us to be generic over `List<T>` and `[T]`. This trait has an `as_slice()` and `into_iter()` method, and some other convenience functions. However, importantly, since types like `I::GenericArgs` now implement `SliceLike` rather than `IntoIter<Item = I::GenericArg>`, we can't use `TraitRef::new` on this directly. That's where `new_from_args` comes in.
Finally, we adjust all the code to use these slice operators. Some things get simpler, some things get a bit more annoying since we need to use `as_slice()` in a few places. 🤷
r? lcnr
Clean up some comments near `use` declarations
#125443 will reformat all `use` declarations in the repository. There are a few edge cases involving comments on `use` declarations that require care. This PR cleans up some clumsy comment cases, taking us a step closer to #125443 being able to merge.
r? ``@lqd``
Actually taint InferCtxt when a fulfillment error is emitted
And avoid checking the global error counter
fixes#122044fixes#123255fixes#123276fixes#125799