Don't allow test revisions that conflict with built in cfgs
Fixes#128964
Sorry `@heysujal` I started working on this about 1 minute before your comment by complete coincidence 😅
minor `*dyn` cast cleanup
Small follow-up to https://github.com/rust-lang/rust/pull/130234 to remove a redundant check and clean up comments. No functional changes.
Also, explain why casts cannot drop the principal even though coercions can, and add a test because apparently we didn't have one already.
r? `@WaffleLapkin` or `@compiler-errors`
Deeply normalize `TypeTrace` when reporting type error in new solver
Normalize the values that come from the `TypeTrace` for various type mismatches.
Side-note: We can't normalize the `TypeError` itself bc it may come from instantiated binders, so it may reference values from within the probe...
r? lcnr
Rename Receiver -> LegacyReceiver
As part of the "arbitrary self types v2" project, we are going to replace the current `Receiver` trait with a new mechanism based on a new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard. Options considered included:
* HardCodedReceiver (because it should only be used for things in the standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary. Assuming the new mechanism proceeds to stabilization as intended, the legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library, we suspect it may be in use elsehwere, so we're landing this change separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
Rollup of 9 pull requests
Successful merges:
- #130991 (Vectorized SliceContains)
- #131928 (rustdoc: Document `markdown` module.)
- #131955 (Set `signext` or `zeroext` for integer arguments on RISC-V and LoongArch64)
- #131979 (Minor tweaks to `compare_impl_item.rs`)
- #132036 (Add a test case for #131164)
- #132039 (Specialize `read_exact` and `read_buf_exact` for `VecDeque`)
- #132060 ("innermost", "outermost", "leftmost", and "rightmost" don't need hyphens)
- #132065 (Clarify documentation of `ptr::dangling()` function)
- #132066 (Fix a typo in documentation of `pointer::sub_ptr()`)
r? `@ghost`
`@rustbot` modify labels: rollup
"innermost", "outermost", "leftmost", and "rightmost" don't need hyphens
These are all standard dictionary words and don't require hyphenation.
-----
Encountered an instance of this in error messages and it bugged me, so I
figured I'd fix it across the entire codebase.
Add a test case for #131164
The upstream has already been fixed, but it won't be backported to LLVM 19.
r? jieyouxu or compiler
try-job: x86_64-gnu-stable
Set `signext` or `zeroext` for integer arguments on RISC-V and LoongArch64
This PR contains 3 commits:
- the first one introduces a new function `adjust_for_rust_abi` in `rustc_target`, and moves the x86 specific adjustment code into it;
- the second one adds RISC-V specific adjustment code into it, which sets `signext` or `zeroext` attribute for integer arguments.
- **UPDATE**: added the 3rd commit to apply the same adjustment for LoongArch64.
Add wasm32v1-none target (compiler-team/#791)
This is a preliminary implementation of the MCP discussed in [compiler-team#791](https://github.com/rust-lang/compiler-team/issues/791). It's not especially "major" but you know, process! Anyway it adds a new wasm32v1-none target which just pins down a set of wasm features. I think this is close to the consensus that emerged when discussing it on Zulip so I figured I'd sketch to see how hard it is. Turns out not very.
Optimize `Rc<T>::default`
The missing piece of https://github.com/rust-lang/rust/pull/131460.
Also refactored `Arc<T>::default` by using a safe `NonNull::from(Box::leak(_))` to replace the unnecessarily unsafe call to `NonNull::new_unchecked(Box::into_raw(_))`. The remaining unsafety is coming from `[Rc|Arc]::from_inner`, which is safe from the construction of `[Rc|Arc]Inner`.
Represent `hir::TraitBoundModifiers` as distinct parts in HIR
Stop squashing distinct `polarity` and `constness` into a single `hir::TraitBoundModifier`.
This PR doesn't attempt to handle all the corner cases correctly, since the old code certainly did not either; but it should be much easier for, e.g., rustc devs working on diagnostics, or clippy devs, to actually handle constness and polarity correctly.
try-job: x86_64-gnu-stable
x86-32 float return for 'Rust' ABI: treat all float types consistently
This helps with https://github.com/rust-lang/rust/issues/131819: for our own ABI on x86-32, we want to *never* use the float registers. The previous logic only considered F32 and F64, but skipped F16 and F128. So I made the logic just apply to all float types.
try-job: i686-gnu
try-job: i686-gnu-nopt
Rollup of 8 pull requests
Successful merges:
- #125205 (Fixup Windows verbatim paths when used with the `include!` macro)
- #131049 (Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`)
- #131549 (Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function)
- #131731 (add `TestFloatParse` to `tools.rs` for bootstrap)
- #131732 (Add doc(plugins), doc(passes), etc. to INVALID_DOC_ATTRIBUTES)
- #132006 (don't stage-off to previous compiler when CI rustc is available)
- #132022 (Move `cmp_in_dominator_order` out of graph dominator computation)
- #132033 (compiletest: Make `line_directive` return a `DirectiveLine`)
r? `@ghost`
`@rustbot` modify labels: rollup
Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function
It's confusing to `?` a future of a result in a sync function. We have a suggestion to `.await` it if we're in an async function, but not a sync function. Note that this is the case for sync functions, at least.
Let's be a bit more vague about a fix, since it's somewhat context dependent. For example, you could block on it, or you could make your function asynchronous. 🤷
Fixup Windows verbatim paths when used with the `include!` macro
On Windows, the following code can fail if the `OUT_DIR` environment variable is a [verbatim path](https://doc.rust-lang.org/std/path/enum.Prefix.html) (i.e. begins with `\\?\`):
```rust
include!(concat!(env!("OUT_DIR"), "/src/repro.rs"));
```
This is because verbatim paths treat `/` literally, as if it were just another character in the file name.
The good news is that the standard library already has code to fix this. We can simply use `components` to normalize the path so it works as intended.
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
Move const trait tests from `ui/rfcs/rfc-2632-const-trait-impl` to `ui/traits/const-traits`
I found the old test directory to be somewhat long to name, and I don't think it's necessary to put an experimental implementation's tests under an rfc which is closed.
r? fee1-dead
Breaking this out of #131985 so that PR doesn't touch 300 files.
Always specify `llvm_abiname` for RISC-V targets
For RISC-V targets, when `llvm_abiname` is not specified LLVM will infer the ABI from the target features, causing #116344 to occur. This PR adds the correct `llvm_abiname` to all RISC-V targets where it is missing (which are all soft-float targets), and adds a test to prevent future RISC-V targets from accidentally omitting `llvm_abiname`. The only affect of this PR is that `-Ctarget-feature=+f` (or similar) will no longer affect the ABI on the modified targets.
<!-- homu-ignore:start -->
r? `@RalfJung`
<!--- homu-ignore:end -->
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)
Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Dont consider predicates that may hold as impossible in `is_impossible_associated_item`
Use infer vars to account for ambiguities when considering if methods are impossible to instantiate for a given self type. Also while we're at it, let's use the new trait solver instead of `evaluate` since this is used in rustdoc.
r? lcnr
Fixes#131839
(ci) Update macOS Xcode to 15
This updates the macOS builders to Xcode 15. The aarch64 images will be removing Xcode 14 and 16 very soon (https://github.com/actions/runner-images/issues/10703), so we will need to make the switch to continue operating. The linked issue also documents GitHub's new policy for how they will be updating Xcode in the future. Also worth being aware of is the future plans for x86 runners documented in https://github.com/actions/runner-images/issues/9255 and https://github.com/actions/runner-images/issues/10686, which will impact our future upgrade behaviors.
I decided to also update the Xcode in the x86_64 runners, even though they are not being removed. It felt better to me to have all macOS runners on the same (major) version of Xcode. However, note that the x86_64 runners do not have the latest version of 15 (15.4), so I left them at 15.2 (which is currently the default Xcode of the runner).
Xcode 15 was previously causing problems (see #121058) which seem to be resolved now. `@bjorn3` fixed the `invalid r_symbolnum` issue with cranelift. The issue with clang failing to link seems to be fixed, possibly by the update of the pre-built LLVM from 14 to llvm 15 in https://github.com/rust-lang/rust/pull/124850, or an update in our source version of LLVM. I have run some try builds and at least LLVM seems to build (I did not run any tests).
Closes#121058
Improve test coverage for `unit_bindings` lint
Follow-up to #112380, apparently at the time I didn't add much of any test coverage outside of just "generally works as intended on the test suites and in the crater run".
r? compiler
test: Add test for trait in FQS cast, issue #98565Closes#98565 by adding a test to check for diagnostics when the built-in type `str` is used in a cast where a trait is expected.